LYCÉE CLEMENCEAU MPI/MPI*

K D O D U 10/11/2025

$R \not e duction$

Exercice 1 (Diagonalisation simultanée).

Soient A et B deux matrices diagonalisables. Montrer que : les matrices A et B commutent (AB = BA) si, et seulement si, il existe une même matrice inversible P telle que $P^{-1}AP$ et $P^{-1}BP$ sont toutes deux diagonales.

Exercice 2. Soient A et B deux matrices diagonalisables de $\mathcal{M}_n(\mathbb{K})$, où $\mathbb{K} = \mathbb{R}$. On suppose qu'il existe un entier naturel impair k tel que $A^k = B^k$.

- 1. Comparer les sous-espaces propres des matrices A et A^k .
- 2. Montrer qu'il existe une matrice $P \in GL_n(\mathbb{K})$ telle que les matrices $A' = P^{-1}AP$ et $B' = P^{-1}BP$ soient de le forme :

$$A' = \begin{bmatrix} d_1 \downarrow & d_2 \downarrow & \cdots & d_r \downarrow & d$$

- 3. En déduire que : A = B.
- 4. Cette dernière propriété est-elle encore vraie si k est pair? si $\mathbb{K} = \mathbb{C}$?