Colle 08 suites de fonctions

MARTIENNE Lucie

Exercice 1. \heartsuit Soit $(f_n)_{n\in\mathbb{N}}$ définies sur $I=]-\pi,\pi[$ par

$$f_n(0) = 0, \quad f_n(x) = \frac{\sin^2 nx}{n \sin x}, \ x \neq 0.$$

Étudier la convergence simple ou uniforme de la suite (f_n) sur tout ou partie de l'intervalle I.

Exercice 2. Déterminer un développement asymptotique de $u_n = \int_0^1 \frac{\mathrm{d}u}{1+u^n}$ en $o\left(1/n^2\right)$.

Solution 1. On a

$$\forall n \ge 1, \ \forall x \in I \setminus \{0\}, \ |f_n(x)| \le \frac{1}{n \sin x}.$$

On a donc convergence simple sur I de la suite (f_n) vers la fonction nulle (la convergence simple en 0 est évidente) mais on n'a pas de convergence uniforme vers la fonction nulle car si $x_n = \frac{1}{n}$, alors $\lim_{n \to +\infty} f_n(x_n) = \sin^2 1 \neq 0$.

Par contre sur tout segment de la forme $[-\pi + \delta, \delta]$ ou $[\delta, \pi - \delta]$, on a

$$\forall n \ge 1, \ \forall x \in I \setminus \{0\}, \ |f_n(x)| \le \frac{1}{n \sin \delta},$$

qui donne la convergence uniforme.

Solution 2. On pose $I_n = \int_0^1 \frac{v^{1/n}}{1+v} dv$. Le changement de variable $v = u^n$ donne :

$$u_n - 1 = \int_0^1 \frac{1}{1 + u^n} du - 1 = \int_0^1 \frac{-u^n}{1 + u^n} du = -\frac{1}{n} I_n$$

On cherche le développement asymptotique de I_n à l'aide du théorème de convergence dominée.

- **Terme d'ordre 0**: La suite de fonctions $f_n: v \mapsto \frac{v^{1/n}}{1+v}$ converge simplement sur]0,1] vers $v \mapsto \frac{1}{1+v}$. Elle est dominée par la fonction intégrable $v \mapsto \frac{1}{1+v}$ sur [0,1]. Donc $\lim_{n\to+\infty} I_n = \int_0^1 \frac{1}{1+v} dv = \ln 2$. On a $I_n = \ln 2 + o(1)$.
- **Terme d'ordre 1**: On étudie la limite de $n(I_n \ln 2) = \int_0^1 \frac{v^{1/n} 1}{1/n} \frac{1}{1+v} dv$. L'intégrande converge simplement vers $v \mapsto \ln(v) \frac{1}{1+v}$. En admettant la domination (par exemple par $|\ln v|/(1+v)$ qui est intégrable), on obtient :

$$\lim_{n \to +\infty} n(I_n - \ln 2) = \int_0^1 \frac{\ln v}{1+v} dv = -\frac{\pi^2}{12}$$

Donc $I_n = \ln 2 - \frac{\pi^2}{12n} + o(1/n)$.

En injectant ce résultat dans l'expression de u_n :

$$u_n = 1 - \frac{1}{n} \left(\ln 2 - \frac{\pi^2}{12n} + o\left(\frac{1}{n}\right) \right) = 1 - \frac{\ln 2}{n} + \frac{\pi^2}{12n^2} + o\left(\frac{1}{n^2}\right)$$

MOREL Jules

Exercice 3. On définit la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ sur \mathbb{R} par

$$\forall n \in \mathbb{N}^*, \ \forall x \in \mathbb{R}, \ f_n(x) = n \sin\left(\frac{x}{n}\right).$$

- 1. La suite $(f_n)_{n\in\mathbb{N}^*}$ converge-t-elle simplement et vers quelle fonction?
- 2. La convergence de la suite $(f_n)_{n\in\mathbb{N}^*}$ est-elle uniforme sur \mathbb{R} ?
- 3. La convergence de la suite $(f_n)_{n\in\mathbb{N}^*}$ est-elle uniforme sur [-a,a], a>0?

Exercise 4. Pour tout $n \in \mathbb{N}$, on pose : $I_n = \int_0^1 \frac{t^{n+1} \ln t}{1-t^2} dt$.

- a) Montrer la convergence de I_n .
- b) Étudier la convergence et la limite éventuelle de (I_n) .
- c) Trouver un équivalent simple de I_n .

Solution 3.

Solution 4. 1/ Pour x=0, on a $f_n(0)=0$ pour tout n. Pour $x\neq 0$ fixé, $f_n(x)\sim x$ donc f_n converge simplement sur \mathbb{R} vers la fonction $x \mapsto x$. $2/Pour x_n = n, on a$

$$\lim_{n \to +\infty} f_n(x_n) - f(x_n) = \lim_{n \to +\infty} n(\sin(1) - 1) = -\infty$$

donc on n'a pas la convergence uniforme sur \mathbb{R} .

3/ Sur le segment [-a,a], on étudie la fonction $g_n(x)=f_n(x)-f(x)$, $g'_n(x)=\cos\left(\frac{x}{n}\right)-1$ qui est décroissante négative sur [-a,a] et donc $|g_n(x)| \leq |g_n(a)| = a - n \sin \frac{a}{n}$ qui tend vers 0 et donc on a la convergence uniforme sur tout segment.

Solution 5.

a) Convergence de I_n $La \ fonction \ f_n : t \mapsto \frac{t^{n+1} \ln t}{1-t^2} \ si \ t \neq 0 \ et \ 0 \ sinon \ est \ continue \ et \ n\'egative \ sur \ [0,1[.$

$$f_n(1-h) = \frac{(1-h)^{n+1}\ln(1-h)}{1-(1-h)^2} = \frac{(1-h)^{n+1}\ln(1-h)}{2h-h^2} \underset{h\to 0^+}{\sim} \frac{1\cdot(-h)}{2h} = -\frac{1}{2}$$

La fonction se prolonge aussi par continuité en 1 en posant $f(1) = -\frac{1}{2}$. I_n est bien définie.

3

b) Limite de (I_n)

On applique le théorème de convergence dominée. Soit $f_n(t) = \frac{t^{n+1} \ln t}{1-t^2}$ sur]0,1[.

- Pour tout $t \in]0,1[$, la suite $(t^{n+1})_n$ converge vers 0. Donc $\lim_{n\to+\infty} f_n(t) = 0$. La suite de fonctions (f_n) converge simplement vers la fonction nulle sur]0,1[.
- **Hypothèse de domination :** Pour tout $n \in \mathbb{N}$ et $t \in]0,1[$, on a $0 < t^{n+1} \le t$. Ainsi, $|f_n(t)| \le \frac{t|\ln t|}{1-t^2} = -f_0(t)$. La fonction majorante $-f_0$ est intégrable sur]0,1[(d'après la question a).

Par le théorème de convergence dominée, on en déduit que :

$$\lim_{n \to +\infty} I_n = \int_0^1 0 \cdot \mathrm{d}t = 0$$

c) **Équivalent de** I_n

On cherche le comportement asymptotique de $I_n = \int_0^1 t^n \cdot \left(\frac{t \ln t}{1-t^2}\right) dt$. Posons $g(t) = \frac{t \ln t}{1-t^2}$ pour $t \in]0,1[$. On a vu en a) que g est prolongeable par continuité sur [0,1] en posant g(0) = 0 et g(1) = -1/2. Nous allons montrer que $(n+1)I_n \to g(1)$. Effectuons le changement de variable $u = t^{n+1}$ dans l'intégrale I_n . On a $t = u^{\frac{1}{n+1}}$ et $dt = \frac{1}{n+1}u^{\frac{1}{n+1}-1}du$.

$$I_n = \int_0^1 u^{\frac{n}{n+1}} g(u^{\frac{1}{n+1}}) \frac{1}{n+1} u^{\frac{1}{n+1}-1} du = \frac{1}{n+1} \int_0^1 g(u^{\frac{1}{n+1}}) du$$

Donc $(n+1)I_n = \int_0^1 h_n(u) du$ avec $h_n(u) = g(u^{\frac{1}{n+1}}).$

- Pour tout $u \in]0,1]$, $\lim_{n\to+\infty} u^{\frac{1}{n+1}} = 1$, donc par continuité de g en 1, $\lim_{n\to+\infty} h_n(u) = g(1) = -1/2$.
- La fonction g étant continue sur le segment [0,1], elle est bornée par une constante M. On a $|h_n(u)| \leq M$ pour tout $u \in]0,1]$, et la fonction constante M est intégrable sur [0,1].

Par le théorème de convergence dominée :

$$\lim_{n \to +\infty} (n+1)I_n = \int_0^1 \left(-\frac{1}{2}\right) \mathrm{d}u = -\frac{1}{2}$$

On en déduit l'équivalent :

$$I_n \underset{n \to +\infty}{\sim} \frac{-1/2}{n+1} \underset{n \to +\infty}{\sim} -\frac{1}{2n}$$

PERRAUD Gaëlle

Exercice 5. \heartsuit Pour $x \in [0, \frac{\pi}{2}]$, on pose $f_n(x) = (n+1)\sin x \cos^n x$.

- 1. Déterminer la limite simple de la suite de fonctions (f_n) .
- 2. Montrer que la convergence est uniforme sur tout segment de la forme $[\delta, \frac{\pi}{2} \delta]$ avec $0 < \delta < \frac{\pi}{2}$.
- 3. Calculer $\left(\int_0^{\frac{\pi}{2}} f_n(t) dt\right)$. La convergence de la suite est-elle uniforme sur $\left[0, \frac{\pi}{2}\right]$?

Exercice 6. f est une fonction C^2 de $[1, +\infty[$ dans \mathbb{R} , on pose

$$f_n: x \ge 1 \mapsto \frac{n}{x} \left(f\left(x + \frac{x}{n}\right) - f(x) \right).$$

- 1. Etudier la convergence simple de (f_n) .
- 2. Ici, $f(x) = \ln(x)$. Montrer que la convergence est uniforme.
- 3. Ici $f = \cos$. Montrer que la convergence n'est pas uniforme.
- 4. On suppose que $x \mapsto xf''(x)$ est bornée. Montrer que (f_n) converge uniformément.

Si on suppose de plus que $\frac{f(x)}{x}$ converge en $+\infty$, qu'en déduire sur le comportement de f' en $+\infty$?

Solution 6.

- 1. $Pour \in]0, \frac{\pi}{2}], |\cos x| < 1$ et $donc \lim_{n \to +\infty} (n+1) \sin x \cos^{n+1} x = 0$ (le critère u_{n+1}/u_n par exemple!). $De \ plus, f_n(0) = 0.$ La suite (f_n) converge donc simlement vers la fonction nulle.
- 2. La convergence est uniforme sur $[\delta, \frac{\pi}{2}]$. On écrit alors

$$(n+1)|\sin x \cos^n x| \le (n+1)\cos^n \delta.$$

D'où la convergence uniforme.

3.
$$\int_0^{\frac{\pi}{2}} f_n(t) dt = \left[-\cos^{n+1} x\right]_0^{\pi/2}.$$
 Si la convergence était uniforme sur $\left[0, \frac{\pi}{2}\right]$, on aurait

$$\lim_{n \to +\infty} \int_0^{\frac{\pi}{2}} f_n(t) dt = \int_0^{\frac{\pi}{2}} \lim_{n \to +\infty} f_n(t) dt = 0.$$

Solution 7.

- 1. Converge vers f'
- 2. $|f_n(x) 1/x| = \frac{1}{x} |n \ln(1 + 1/n) 1| \le |n \ln(1 + 1/n) 1| \to 0.$
- 3. $f_n(n\pi) \sin(n\pi) = 2\frac{(-1)^{n+1}}{\pi}$ ne tend pas vers 0.
- 4. Par Taylor-Lagrange,

$$|f_n(x) - f'(x)| = \left| \frac{n}{x} \left(f\left(x + \frac{x}{n}\right) - f(x) \right) - f'(x) \right| \le \frac{x}{n} \sup\left[x, x + x/n \right] |f''| \le C/n$$

d'où la CU.

Par CU, on applique la double limite : Soit $l = \lim_{x \to +\infty} f(x)/x$.

$$\lim_{x \to +\infty} f'(x) = \lim_{n \to +\infty} \lim_{x \to +\infty} f_n(x)$$

$$= \lim_{n \to +\infty} n \lim_{x \to +\infty} \left((1+1/n) \frac{f(x+x/n)}{x+x/n} - \frac{f(x)}{x} \right)$$

$$= nl/n = l$$