Colle 07 Réduction

COFFRE Marius

Exercice 1. Soit E un espace de dimension finie n et u un endomorphisme de E. On suppose que u est diagonalisable.

- 1. Montrer qu'un sous-espace G de E est stable par u si et seulement si G admet une base composée de vecteurs propres de u.
- 2. Montrer que tout sous-espace de E admet un supplémentaire stable par u.
- 3. Réciproquement, soit v un endomorphisme de E tel que tout sous-espace de E admet un supplémentaire stable par v. Montrer que v est diagonalisable.

Exercice 2. On rappelle qu'une matrice $M \in \mathcal{M}_n(\mathbb{C})$ est dite nilpotente si et seulement si il existe $p \in \mathbb{N}^*$ tel que $M^p = 0$.

Une matrice $M \in \mathcal{M}_n(\mathbb{C})$ est dite idempotente si et seulement si il existe $p \in \mathbb{N}^*$ tel que $M^p = I_n$. Si M est idempotente on définit son indice d'idempotence par $ind(M) = min\{p \in \mathbb{N}^* \mid M^p = I_n\}$.

- 1. Question de cours. Soit $M \in \mathcal{M}_n(\mathbb{C})$ nilpotente. Montrer que $M^n = 0$.
- 2. Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ telles que A + tB soit nilpotente pour n + 1 valeurs distinctes de t dans \mathbb{C} . Montrer que A et B sont nilpotentes.
- 3. Donner deux matrices $A, B \in \mathcal{M}_3(\mathbb{C})$ telles que $\forall t \in \mathbb{C}, A + tB$ est idempotente, et $AB \neq BA$.
- 4. Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ telles que $\forall t \in \mathbb{C}, A + tB$ est idempotente. Montrer que A est idempotente et B est nilpotente.
- 5. Soient $A, B \in \mathcal{M}_2(\mathbb{C})$ telles que $\forall t \in \mathbb{C}, A + tB$ est idempotente. Montrer que A et B sont simultanément trigonalisables.
- 6. Indépendant de ce qui précède. Déterminer $M \in \mathcal{M}_2(\mathbb{Z})$ idempotente avec ind(M) = 6.

Solution 1.

- 1. Si G admet une base composée de vecteurs propres de u, alors G est stable par u. Récirproquement, si u est un endomorphisme diagonalisable, alors l'endomorphisme induit $G \to G$ est encore diagonalisable car $\pi_u(\tilde{u}) = 0$ et π_u simplement scindé.
- 2. Soit G un sous-espace de E et g une base de G.

Soit e une base de E de diagonalisation pour u.

On peut compléter g en une base de F par une sous-famille e' de e.

H = Vect(e') convient.

- 3. Par récurrence sur la dimension de E:n.
 - \rightarrow Quand n=1: tout endomorphisme est diagonalisable.
 - -> Pour passer du rang n au rang n + 1 : soit E de dimension n + 1.

Soit D une droite de E.

Elle admet un supplémentaire H stable par v.

H lui-même admet un supplémentaire D' stable par v.

Il reste à prouver que l'endomorphisme w induit par v sur H est diagonalisable.

On lui applique l'hypothèse de récurrence :

(*) Soit G un sous-espace de H.

G admet un supplémentaire dans E stable par v:G'.

(*) On pose $F = H \cap G'$. F convient car:

(**) F est un sous-espace de H et il est stable par v donc par w.

(***) $F \cap G$ est réduit au vecteur nul.

(***) F + G = H vu que G' + G = E et en détaillant. On peut aussi passer par les dimensions en remarquant que E = H + G'.

Solution 2.

- 1. Le plus simple est d'utiliser une trigonalisation. Sinon, noyaux itérés.
- 2. Pas très original... Les coefficients de $(A+tB)^n$ sont polynomiaux en t de degré $\leq n$, et possèdent n+1 racines, donc sont identiquement nuls. $\forall t \in \mathbb{C}$, $(A+tB)^n$. En particulier (t=0), $A^n=0$. De plus les coefficients de t^n sont ceux de B^n $((A+tB)^n=A^n+t..+...+t^{n-1}...+t^nB^n)$, donc $B^n=0$.
- 3. $A = \begin{pmatrix} 1 & e & f \\ 0 & -1 & g \\ 0 & 0 & i \end{pmatrix}$ (i est le complexe) et $B = -\begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}$ avec a, ..., g quelconques conviennent: $an(A + tB) = \begin{pmatrix} 1 & 1 & i \end{pmatrix} \text{ dana } A + tB \text{ set diagonalizable et } (A + tB)^4 = L$
- 4. \mathbb{C} n'est pas dénombrable, donc il existe $d \in \mathbb{N}^*$ et $Z \subset \mathbb{C}$ infini tels que $\forall t \in Z$, ind(A + tB) = d. On se fixe de tels d et Z. Alors $(A + tB)^d = A^d + ... + t^dB^d = I_n$ pour une infinité de t donc par argument de polynôme, $A^d = I_n$ et $B^d = 0$.
- 5. Par un changement de base on se ramène à B triangulaire. $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et $B = \begin{pmatrix} 0 & e \\ 0 & 0 \end{pmatrix}$. En disant par exemple que $\forall t \in \mathbb{C}$, $|\det(A+tB)|=1$, on obtient ce=0. Si e=0, B=0 donc c'est bon, et si c=0, A est triangulaire, donc c'est bon aussi.
- 6. χ_M est à coefficients entiers et unitaire. On voudrait que ses racines complexes soient racines primitives 6èmes de l'unité. $(X e^{i\pi/3})(X e^{-i\pi/3}) = X^2 X + 1$ convient.

Si $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, on veut a + d = 1 et ad - bc = 1. a = 1, d = 0, b = 1 et c = -1 conviennent.

Question supplémentaire (un peu répandu) : pour toute matrice idempotente $M \in \mathcal{M}_2(\mathbb{Z})$, ind(M) divise 12.

LE COZ Marius

Exercice 3. Soit $A \in \mathcal{M}_n(\mathbb{K})$ avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On note P_A son polynôme caractéristique et p_A son polynôme minimal de A.

- 1. Caractérisation d'une matrice trigonalisable, (diagonalisable) à l'aide de P_A et p_A .
- 2. On pose $\mathbb{K} = \mathbb{R}$.
 - (a) Montrer que si P_A est scindé, alors P_{A^k} est scindé pour tout $k \in \mathbb{N}$.
 - (b) Montrer que si P_{A^2} est scindé à racines toutes positives, alors P_A est encore scindé.
 - (c) Donner un exemple où P_A n'est pas un polynôme scindé, mais P_{A^3} l'est.
- 3. On pose $\mathbb{K} = \mathbb{C}$.
 - (a) On suppose que pour tout $x \in \mathbb{C}^n$, il existe $p \in \mathbb{N}^*$ tel que $A^p(x) = x$. Montrer que A est diagonalisable.
 - (b) Montrer que si A n'est pas diagonalisable, alors il existe $x \in \mathbb{C}^n$ et $\lambda \in \mathbb{C}$ tel que $(A \lambda I_n)^2 x = 0$ mais $(A \lambda I_n)x \neq 0$.
 - (c) On suppose que A est inversible et que pour tout $x \in \mathbb{C}^n$, $\sup_{k \in \mathbb{Z}} ||A^k(x)|| < +\infty$. Montrer que A est diagonalisable.

- Solution 3. 1/ Cours. 2.a/ Si P_A est scindé, alors A est trigonalisable, donc A^k aussi et P_{A^k} est scindé. 2.b/ Soit λ une valeur propre complexe de A, alors λ^2 est une valeur propre de A^2 : on pose $\lambda = \alpha + i\beta$, et l'hypothèse sur les valeurs propres de A^2 implique que $(\alpha^2 \beta^2) + i(\alpha\beta) \geq 0$, donc $\alpha\beta = 0$ et $\alpha^2 \beta^2 = 0$ et nécessairement $\beta = 0$. On en déduit que toutes les valeurs prores de λ sont réelles et P_A est scindé dans $\mathbb{R}[X]$.
- 2.c/ Supposons que $P_A = X^2 + X + 1$, polyôme non scindé, alors $A^3 = -A^2 A = -I$ et $P_A^3 | (X I)^3$.

 On prend par exemple $A = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$.
- 3.a/ Soit (e_1, \dots, e_n) la base canonique de \mathbb{C}^n et soit $p_i \in \mathbb{N}^*$ tel que $A^{p_i}(e_i) = e_i$. Si p est le ppcm des p_i , alors A^p est la matrice identité, donc $A^p I_n = 0$. On en déduit que $P_A|X^p 1$ et donc n'a que des racines simples. Il est scindé puisque l'on est dans \mathbb{C} , la matrice est diagonalisable.
- 3.b/ Si f est endomorphisme en dimension finie, si la suite des noyaux ou des images de f^k est stable au rang k_0 , elle devient constante. Si A n'est pas diagonalisable, il existe une valeur propre λ tel que l'espace caractéristique associé $E_{\lambda} = \ker(A \lambda I_n)^{\alpha}$ et $E \neq \ker(A \lambda I_n)^{\alpha-1}$, $\alpha \geq 2$. On en déduit que $\ker(A \lambda I_n) \neq \ker(A \lambda I_n)^2$, ce qui donne le résultat.
- 3.c/ On remarque que si λ est une valeur propre $(\neq 0)$ de A, alors λ^{-1} est une valeur propre de A^{-1} . On en déduit facilement que λ est de norme 1, sinon le sup n'existe pas. De plus, si A est diagonalisable avec que des valeurs propres de modules 1, il est clair que le sup existe. Enfin, si A n'est pas diagonalisable, il existe donc x et λ comme précédemment et $|\lambda|=1$. En posant, posant $y=Ax-\lambda x$, on a $A^kx=k\lambda^{k-1}x+\lambda^k y$, dont le module tend vers $+\infty$. Donc A est diagonalisable.

VIK Marius

Exercice 4. Soient n dans \mathbb{N}^* et A dans $\mathcal{M}_n(\mathbb{R})$. On dit que A est bien posée si, pour tout $C \in \mathcal{M}_n(\mathbb{R})$, il existe une unique M de $\mathcal{M}_n(\mathbb{R})$ telle que $MA + A^TM = C$. On note S_A l'ensemble des valeurs propres complexes de A.

- 1. Soient X et Y deux vecteurs propres complexes de A^T . On pose $B = YX^T$. Calculer $BA + A^TB$.
- 2. On suppose que $S_A \cap S_{-A} \neq \emptyset$. Montrer qu'il existe B dans $\mathcal{M}_n(\mathbb{C}) \setminus \{0\}$ telle que $BA + A^TB = 0$.
- 3. On suppose $S_A \cap S_{-A} = \emptyset$. Montrer que $\chi_A(-A^T)$ est inversible.
- 4. Donner une condition nécessaire et suffisante pour que A soit bien posée.
- 5. On suppose que tous les éléments de S_A ont leur partie réelle dans \mathbb{R}_-^* . Montrer qu'il existe une unique M dans $\mathcal{M}_n(\mathbb{R})$ telle que $MA + A^TM = I_n$.

Solution 4.

1. Si X et Y sont associés respectivement aux valeurs propres λ_x et λ_y , alors $A^TB = A^TXY^T = \lambda_x B$ et $BA = X(A^TY)^T = \lambda_y B$.

Soit φ_A est l'endomorphisme de $\mathcal{L}(\mathcal{M}_n(\mathbb{R}))$, $M \mapsto MA + A^TM$. Alors, $\lambda_x + \lambda_y$ est valeur propre de φ de vecteur propre (non nul) associé B.

Si S_A ∩ S_{-A} ≠ ∅, alors il existe λ ∈ S(A) telle que −λ ∈ S(−A) = −S(A).
 La dernière égalité, car A est trigonalisable dans ℂ et −A a donc une diagonale avec les opposées de la diagonale de A. Mais S_A = S_{AT}. On applique la question précédente à X vecteur propre non nul de A^T associée à λ et Y vecteur propre de A^T non nul associé à −λ On obtient B ≠ 0 telle que

$$BA + A^TB = 0.$$

Mais "A bien posée" est par définiton équivalent à " φ_A injective". Danc A n'est pas bien posée.

3. Si $S_A \cap S_{-A} = \emptyset$, alors pour toute valeur propre $\lambda \in S_A$, $-\lambda \notin S_A$, donc $\chi_A(-\lambda) \neq 0$. On sait que $-A^T$ est trigonalisable dans $\mathbb C$ et que sur la diagonale apparaissent les valeurs de $-A^T$ qui sont les mêmes que celles de -A, qui sont de la forme $-\lambda$ avec $\lambda \in S_A$. Or, si A semblable à une matrice triangulaire T) de diagonale $D(T) = (\lambda_1, \dots, \lambda_n)$, alors $-A^T$ est semblable à $-T^T$ et sa diagonale $D(-T^T) = (-\lambda_1, \dots, -\lambda_n)$. Mais alors $\chi_A(-T^T)$ est encore une matrice triangulaire et sa diagonale vaut

$$D(\chi(-T^T) = (\chi_A(-\lambda_1), \cdots, \chi_A(-\lambda_n)).$$

On a montré que la diagonale n'a des éléments non nuls, donc est inversible.

4. Montrons que φ_A est injective si et seulement si $S_A \cap S_{-A} = \emptyset$. La question 2 montre \Leftarrow .

 $Pour \Rightarrow : On \ suppose \ que \ BA + A^TB = 0. \ Alors \ BA = -A^TB. \ On \ v\'erfie \ par \ r\'ecurrence \ sur \ k \ que \ pour \ tout \ k \in \mathbb{N}, \ BA^k (= -A^T)^k B.$

On en déduit que pour tout polynôme $P \in \mathbb{C}[X]$, $BP(A) = P(-A^T)B$.

On applique cette propriété à χ_A , et ainsi $B\chi_A(A) = \chi(-A^T)B$. Mais le théorème de Cayley-Hamilton nous dit que $\chi_A(A) = 0$. Donc $\chi_A(-A^T)B = 0$. Mais avec la condition de l'hypothèse, la question 3/ affirme que $\chi_A(-A^T)$ est inversible. Donc B = 0 et φ_A est injective et A est bien posée.

On applique la proposition démontrée au 4/ à A.
 Comme Re(S(A)) ⊂ ℝ^{*}₋, il est clair que Re(S(-A)) ⊂ ℝ^{*}₊ et donc leur inersection est vide.
 Donc A est bien posée. On en déduit que φ_A est injective, donc bijective car endomorphisme en dimension finie. Cela nous assure l'existence et l'unicité d'une solution au problème posé.