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Exercice 1. Soient un nombre complexe a et la matrice M =

0 0 a
1 0 0
1 1 0

 ∈ M3(C).

1. Calculer le polynôme caractéristique χM (X) de la matrice M .

2. On suppose que a = 0. La matrice M est-elle diagonalisable ?

3. On suppose que a =
1

2
. La matrice M est-elle diagonalisable ?

4. On suppose que a =
27

4
. Montrer que le polynôme χM (X) et sa dérivée χ′

M (X) possèdent une racine

commune. La matrice M est-elle diagonalisable ?

5. Pour quelles valeurs de a ∈ C la matrice M est-elle diagonalisable ?

1. ∀z ∈ C, χM (z) =

∣∣∣∣∣∣
z 0 −a
−1 z 0
−1 −1 z

∣∣∣∣∣∣ = z3 − az − a.

2. Si a = 0 alors χM (X) = X3, d’où 0 est l’unique valeur propre de M . Si M est diagonalisable, alors il existe P telle que
P−1MP = 0. C’est absurde car M ̸= 0. Donc M n’est pas diagonalisable.

3. Si a =
1

2
, alors χM (X) = X3 − 1

2
X − 1

2
= (X − 1)(X2 +X + 1

2
). D’où Sp(M) =

{
1;− 1

2
+ i

2
;− 1

2
− i

2

}
. La matrice M

possède 3 valeurs propres distinctes deux à deux, donc M est diagonalisable.

4. La dérivée du polynôme χM (X) est le polynôme χ′
M (X) = 3X2 − a. Si a =

27

4
, alors −

3

2
est une racine de χM (X) et de

χ′
M (X), d’où −

3

2
est une racine au moins double de χM (X).

χM (X = (X + 3
2
)(X − 3), do’ù Sp(M) = {− 3

2
; 3} et

{
dimE3(M) = 1

1 ≤ dimE−3/2(M) ≤ 2
. La matrice M est diagonalisable si, et

seulement si, dimE3(M) + dimE−3/2(M) = 3 si, et seulement si, dimE−3/2(M) = 2. Or

M ·

x
y
z

 = −
3

2

x
y
z

 ⇐⇒

x
y
z

 = z

−9/2
3
1

 .

D’où dimE−3/2(M) = 1. Donc M n’est pas diagonalisable.

5. Si le polynôme caractéristique χM (X) possède une racine z double, alors χM (z) = z3−az−a = 0 et χ′
M (z) = 3z2−a = 0.

D’où a = 0 ou z = − 3
2
(car 0 = 3χM (z)− zχ′

M (z) = −2az − 3a).

Si a = 0, alors M n’est pas diagonalisable (question 2).

Si z = − 3
2
, alors a = 27

4
, d’où M n’est pas diagonalisable (question 4).

Sinon, les racines du polynôme caractéristique sont simples, d’où il existe 3 valeurs propres distinctes deux à deux, donc
M est diagonalisable.

Donc la matrice M est diagonalisable si, et seulement si, a ∈ C \
{
0; 27

4

}
.



Exercice 2. Soient n− 1 réels a1, . . . , an−1 non tous nuls. Soit la matrice

A =


0 · · · 0 a1
...

...
...

0 · · · 0 an−1

a1 · · · an−1 0

 ∈ Mnn(R).

Déterminer son rang et son spectre. Cette matrice est-elle diagonalisable ?

1. Méthode 1 (sans polynôme caractéristique) — Le rang de A est égal à 2 car les réels ai ne sont pas tous nuls, par
hypothèse. D’où 0 est une valeur propre et le sep E0(A) = Ker(A) est de dimension n− 2 d’après le théorème du rang.
Existe-t-il d’autres valeurs propres ? Soient λ ̸= 0 et X = (x1 · · ·xn)T :

AX = λX ⇐⇒



a1xn = λx1

a2xn = λx2

...

an−1xn = λxn−1

a1x1 + a2x2 + · · ·+ an−1xn−1 = λxn

⇐⇒
{
∀i ∈ J1, n− 1K, xi =

ai
λ
xn

(a21 + a22 + · · ·+ a2n−1)xn = λ2xn

On cheche un vecteur propre, supposons donc que le vecteur-colonne X est non nul. Alors

AX = λX ⇐⇒
{
λ2 = a21 + a22 + · · ·+ a2n−1

X = xn(a1 a2 · · · an−1 λ)T

D’où il y a deux valeurs propres ±toto, où toto =
√

a21 + a22 + · · ·+ a2n−1 ̸= 0 car les réels ai ne sont pas tous nuls, par

hypothèse. De plus dimE+toto(A) = 1 = dimE−toto(A).

On en déduit que dimE0(A) + dimE+toto(A) + dimE−toto(A) = n− 2 + 1 + 1 est égale à la taille de la matrice A, donc
cette matrice est diagonalisable.

2. Méthode 2 (avec polynôme caractéristique) — Soit x ∈ R :

det(xIn −A) =

∣∣∣∣∣∣∣∣∣
x · · · 0 −a1
...

...
...

0 · · · x −an−1

−a1 · · · −an−1 x

∣∣∣∣∣∣∣∣∣ = xn − xn−2
n−1∑
i=1

a2i en développant suivant la dernière ligne. On factorise :

det(xIn −A) = xn−2(x− toto)(x+ toto), où toto =
√

a21 + a22 + · · ·+ a2n−1 ̸= 0 car les réels ai ne sont pas tous nuls, par

hypothèse.

D’où Sp(A) = {0,+toto,−toto} et


1 ≤ dimE0(A) ≤ n− 2

1 ≤ dimE+toto(A) ≤ 1

1 ≤ dimE−toto(A) ≤ 1

Or le rang de A est égal à 2 car les réels ai ne sont pas tous nuls, par hypothèse. Doù le sep E0(A) = Ker(A) est de
dimension n− 2 d’après le théorème du rang. Par suite la somme des dimensions des sep de la matrice A est égale à la
taille de cette matrice. La matrice A est donc diagonalisable.

Exercice 3. Soit, pour tout triplet (a, b, c) ∈ R3, la matrice

M(a, b, c) =

a+ c b c
b a+ 2c b
c b a+ c

 .

On note I = M(1, 0, 0) la matrice identité, J = M(0, 1, 0) et K = M(0, 0, 1).

1. Montrer que l’ensemble F des matrices M(a, b, c), où (a, b, c) parcourt R3, est un sous-espace vectoriel
de M3(R) et déterminer une base de F .

2. Déterminer le spectre et les sous-espaces propres de la matrice J .



3. Déterminer le spectre et les sous-espaces propres de la matrice K.

4. Montrer qu’il existe une matrice P telle que P−1 · J · P et P−1 ·K · P sont diagonales. (C’est la même
matrice P pour J et K.)

5. En déduire qu’il existe une matrice P telle que, pour tout (a, b, c) ∈ R3, la matrice P−1 ·M(a, b, c) · P
est diagonale. (Vous avez bien lu ? c’est la même matrice P pour tout (a, b, c).)

6. Quel est le spectre de la matrice M(a, b, c) ?

Soit, pour tout triplet (a, b, c) ∈ R3, la matrice

M(a, b, c) =

a+ c b c
b a+ 2c b
c b a+ c

 .

On note I = M(1, 0, 0) la matrice identité, J = M(0, 1, 0) et K = M(0, 0, 1).

1. Soit N ∈ M3(R) : N ∈ F ⇐⇒ ∃(a, b, c)R3, N = M(a, b, c) = a · I + b · J + c ·K, d’où F = Vect(I, J,K), donc F est un
sous-espace vectoriel de M3(R).

La famille (I, J,K) est une famille génératrice de F . Montrons que la famille (I, J,K) est aussi libre :

a · I + b · J + c ·K = 0 ⇒

a+ c b c
b a+ 2c b
c b a+ c

 =

0 0 0
0 0 0
0 0 0

 ⇒ a = b = c = 0.

Donc (I, J,K) est une base de F .

2. Soit λ ∈ R : det(λI − J) =

∣∣∣∣∣∣
λ −1 0
−1 λ −1
0 −1 λ

∣∣∣∣∣∣ =
∣∣∣∣∣∣
λ −1 0
0 λ −1
−λ −1 λ

∣∣∣∣∣∣ = λ ·

∣∣∣∣∣∣
1 1 0
0 −λ 1
−1 1 λ

∣∣∣∣∣∣ = λ ·

∣∣∣∣∣∣
1 1 0
0 −λ 1
0 2 −λ

∣∣∣∣∣∣ .
D’où det(λI − J) = λ(λ2 − 2). Le spectre de la matrice J est donc Sp(J) = {0,+

√
2,−

√
2} et

J

 1
0
−1

 = 0

 1
0
−1


u⃗

, J

1/
√
2

1

1/
√
2

 =
√
2

1/
√
2

1

1/
√
2


v⃗

, J

−1/
√
2

1

−1/
√
2

 = −
√
2

−1/
√
2

1

−1/
√
2


w⃗

.

Les sous-espaces propres de la matrice J sont donc Ker(J − 0I) = Vect(u⃗), Ker(J −
√
2I) = Vect(v⃗) et Ker(J +

√
2I) =

Vect(w⃗).

3.

K

 1
0
−1

 = 0

 1
0
−1


u⃗

, K

1
0
1

 = 2

1
0
1


v⃗ ′

, K

0
1
0

 = 2

0
1
0


w⃗ ′

,

d’où le spectre : Sp(K) = {0, 2} et les sous-espaces propres :

Ker(K − 0I) = Vect(u⃗) et Ker(K − 2I) = Vect(v⃗ ′, w⃗ ′).

4. On remarque que les vecteurs v⃗ et w⃗ appartiennent à Ker(K − 2I) = Vect(v⃗ ′, w⃗ ′). En effet, v⃗ ∈ Ker(K − 2I) car

v⃗ = 1√
2
v⃗ ′ + w⃗ ′ et w⃗ ∈ Ker(K − 2I) car w⃗ = w⃗ ′ − 1√

2
v⃗ ′. On choisit donc P égal à la matrice de passage de la base (⃗ı, ȷ⃗, k⃗)

vers la base (u⃗, v⃗, w⃗) :

P =

 1 1/
√
2 −1/

√
2

0 1 1

−1 1/
√
2 −1/

√
2

 .

Avec cette matrice P ,

P−1 · J · P =

0 0 0

0 +
√
2 0

0 0 −
√
2

 et P−1 ·K · P =

0 0 0
0 2 0
0 0 2

 .

5. Avec la même matrice P , P−1 ·M(a, b, c) · P est diagonale car

P−1 ·M(a, b, c) · P = P−1 · (aI + bJ + cK) · P = a · P−1IP + bP−1JP + cP−1KP.

6. D’après la question précédente,

P−1 ·M(a, b, c) · P = a

1 0 0
0 1 0
0 0 1

+ b

0 0 0

0 +
√
2 0

0 0 −
√
2

+ c

0 0 0
0 2 0
0 0 2

 =

a 0 0

0 a+ b
√
2 + 2c 0

0 0 a− b
√
2 + 2c

 .

Le spectre de la matrice M(a, b, c) est donc {a, a+ b
√
2 + 2c, a− b

√
2 + 2c}.


