CORRIGÉ DU T.D. Nº 5

Suites de fonctions

15 novembre 2025

Exercice 1. Soit, pour chaque $n \in \mathbb{N}^*$, la fonction f_n définie par

$$f_n(x) = x^n \ln(x)$$
 si $x \in]0,1]$ et $f_n(0) = 0$.

- 1. Montrer que la suite de fonctions (f_n) converge simplement sur [0,1]. Vers quelle fonction f?
- 2. Dresser le tableau des variations de chaque fonction f_n . La convergence de la suite (f_n) vers la fonction f est-elle uniforme sur [0,1]?
- 1. $f_n(0) = 0 \xrightarrow[n \to \infty]{} 0$; si $x \in]0,1[$, alors $f_n(x) = x^n \ln(x) \xrightarrow[n \to \infty]{} 0$ car $x^n \xrightarrow[n \to \infty]{} 0$; $f_n(1) = 0 \xrightarrow[n \to \infty]{} 0$. Donc la suite de fonctions (f_n) converge simplement sur [0,1] vers la fonction nulle $f:[0,1] \to \mathbb{R}, x \mapsto 0$.
- 2. Soit $n \in \mathbb{N}^*$. On étudie les variations de $f_n : \forall x \in]0,1], \ f'_n(x) = x^{n-1} \cdot [n \ln(x) + 1]$.

x	0		$e^{-1/n}$		1
$f'_n(x)$		_	0	+	
	0				0
$f_n(x)$		\ \		7	
			-1		
			\overline{n} e		

D'où $\max_{x \in [0,1]} |f_n(x) - f(x)| = \frac{1}{ne} \underset{n \to \infty}{\longrightarrow} 0$. Donc la convergence est uniforme.

Exercice 2. Soit une constante $k \in \mathbb{R}$. Soit, pour chaque $n \in \mathbb{N}^*$, la fonction

$$f_n: [0, +\infty[\to \mathbb{R}, x \mapsto n^k x e^{-nx}].$$

- 1. Montrer que la suite de fonctions (f_n) converge simplement : vers quelle fonction f?
- 2. Pour quelles valeurs du réel k la convergence est-elle uniforme sur \mathbb{R}_+ ?
- 3. Soit a > 0. Pour quelles valeurs du réel k la convergence est-elle uniforme sur $[a, +\infty]$?
- 1. Soit $x \in \mathbb{R}_+$:
 - si x = 0, alors $f_n(0) = 0$ tend vers 0 quand n tend vers ∞ ;
 - si x > 0, alors $f_n(x) = n^k x e^{-nx}$ tend vers 0 quand n tend vers ∞ par croissances comparées.

D'où la suite de fonctions (f_n) converge simplement vers la fonction nulle $f:[0,+\infty[\to\mathbb{R},\ x\mapsto 0]$.

2. Chaque fonction f_n est dérivable et $f'_n(x) = n^k(1 - nx)e^{-nx}$, d'où le tableau des variations :

0		1/n		
)	+	0	_	
		n^{k-1}/e		
)	7		\searrow	
0				0
	0 0		$\frac{1}{n^{k-1}/e} + \frac{0}{n^{k-1}/e}$	$+ 0 - n^{k-1}/e$

On en déduit que $\sup_{x \in \mathbb{R}_+} |f_n(x) - f(x)| = \frac{n^{k-1}}{e}$ tend vers 0 si, et seulement si, k < 1.

Donc la convergence est uniforme sur \mathbb{R}_+ si, et seulement si, k < 1.

- 3. Soit a>0. Chaque fonction f_n est décroissante sur $\left[\frac{1}{n},+\infty\right[$. Or, à partir d'un certain rang : $a>\frac{1}{n}$, d'où la fonction f_n est décroissante sur $[a,+\infty[$, d'où $\sup_{x\in[a,+\infty[}|f_n(x)-f(x)|=f_n(a)=n^ka\mathrm{e}^{-na}$ tend vers 0, donc la convergence est uniforme sur $[a,+\infty[$, quelle que soit la valeur de la constante k.
- **Exercice 3.** Soit, pour chaque $n \in \mathbb{N}^*$, la fonction $f_n : [0, +\infty[\to \mathbb{R}, x \mapsto \frac{nx}{1+nx}]$. Montrer que la suite de fonctions (f_n) converge simplement vers une limite f et déterminer cette limite. Montrer que la convergence n'est pas uniforme sur \mathbb{R}_+ . Ni sur \mathbb{R}_+^* . Mais qu'elle l'est sur tout intervalle de la forme $[a, +\infty[$, où a > 0.

 $\overline{\text{Si } x = 0, \text{ alors } f_n(0) = 0} \xrightarrow[n \to \infty]{} 0. \text{ Si } x > 0, \text{ alors } f_n(x) \xrightarrow[n \to \infty]{} 1. \text{ D'où la suite de fonctions } (f_n) \text{ converge simplement vers la}$ $\text{fonction } f: \mathbb{R}_+ \to \mathbb{R}, \ x \mapsto \begin{cases} 0 \text{ si } x = 0 \\ 1 \text{ si } x > 0 \end{cases} \text{ . La convergence n'est pas uniforme sur } \mathbb{R}_+ \text{ car la fonction } f \text{ n'est pas continue sur } \mathbb{R}_+$ $\text{alors que les fonctions } f_n \text{ le sont.}$

Autre méthode : Pour chaque $n \in \mathbb{N}^*$, soit $u_n = \frac{1}{n} : |f_n(u_n) - f(u_n)| = \frac{1}{2}$ ne tend pas vers 0 quand n tend vers l'infini. D'où sup $|f_n(x) - f(x)|$ ne tend pas non plus vers zéro. Donc la convergence de la suite (f_n) n'est pas uniforme sur \mathbb{R}_+ . Ni sur $x \in [0, +\infty[$ \mathbb{R}_+^* car, pour chaque $n \in \mathbb{N}^*$, $u_n \in \mathbb{R}_+^*$.

Soit a>0. Pour tous $n\in\mathbb{N}^*$ et $x>a, 0\leq |1-f_n(x)|=\frac{1}{1+nx}\leq \frac{1}{1+na}$ qui est un majorant. D'où $0\leq \sup_{x\in[a,+\infty[}|f(x)-f_n(x)|\leq \frac{1}{1+na}$ car le \sup est le plus petit majorant. Or $\frac{1}{1+na}\underset{n\to\infty}{\longrightarrow}0$. D'où $\sup_{x\in[a,+\infty[}|f(x)-f_n(x)|\underset{n\to\infty}{\longrightarrow}0$ d'après le théorème des gendarmes. Donc la suite de fonctions (f_n) converge uniformément sur $[a,+\infty[$.

Exercice 4. Soit, pour chaque $n \in \mathbb{N}^*$, la fonction

$$f_n : [0, +\infty[\to \mathbb{R}, x \mapsto \operatorname{Arctan}\left(\frac{x+n}{1+nx}\right)].$$

- 1. Montrer que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge simplement sur $[0,+\infty[$. Vers quelle fonction f?
- 2. Pour chaque $n \in \mathbb{N}^*$, dresser le tableau des variations de la fonction $f f_n$.
- 3. La convergence de (f_n) vers f est-elle uniforme sur $[0, +\infty[$?
- 1. Si x = 0, alors $f_n(0) = \operatorname{Arctan}(n) \xrightarrow[n \to \infty]{\pi} \frac{\pi}{2}$.

Si x > 0, alors $f_n(x) \underset{n \to \infty}{\longrightarrow} \operatorname{Arctan} \frac{1}{x} = \frac{\pi}{2} - \operatorname{Arctan}(x)$.

Donc, pour tout $x \in [0, +\infty[$, $f_n(x) \underset{n \to \infty}{\longrightarrow} f(x) = \frac{\pi}{2} - \operatorname{Arctan}(x)$ et cette fonction f est continue.

2. La fonction $g_n = f - f_n$ est dérivable et, pour tout $x \ge 0$:

$$g_n(x) = \arctan\left(\frac{1+nx}{x+n}\right) - \arctan(x) \quad \text{et} \quad g_n'(x) = /\cdots / = \frac{-2(1+2nx+x^2)}{\left[(x+n)^2 + (1+nx)^2\right](1+x^2)} \le 0,$$

d'où le tableau des variations :

x	0		$+\infty$
$g'_n(x)$		_	
	$Arctan \frac{1}{n}$		
$g_n(x)$		\searrow	
			$-\operatorname{Arctan} \frac{1}{n}$

$$3. \ \ \mathrm{D'où} \ \sup_{x \in [0,+\infty[} |g_n(x)| = \max\left(\left|\mathrm{Arctan} \frac{1}{n}\right|,\left|-\mathrm{Arctan} \frac{1}{n}\right|\right) = \mathrm{Arctan} \frac{1}{n} \underset{n \to \infty}{\longrightarrow} 0.$$

Donc la suite de fonctions (f_n) converge uniformément sur $[0, +\infty[$ vers f.

Exercice 5. Soit une suite de fonctions $f_n:]0,1[\to \mathbb{R}$ convergeant simplement sur]0,1[vers une fonction f. On suppose que:

- 1. chaque fonction f_n est croissante. Montrer que f l'est aussi.
- 2. chaque fonction f_n est bornée. Montrer que f ne l'est pas nécessairement. Et si la convergence est uniforme?
- 3. chaque fonction f_n est polynomiale. Montrer que f ne l'est pas nécessairement. Et si la convergence est uniforme?

On note a = 0 et b = 1.

- 1. Soient deux réels x_1 et x_2 de]a,b[tels que $x_1 \le x_2$. Pour chaque $n \in \mathbb{N}$, la fonction f_n est croissante, d'où les réels $u_n = f_n(x_1)$ et $v_n = f_n(x_2)$ sont tels que $u_n \le v_n$. Or $\lim u_n = f(x_1)$ et $\lim v_n = f(x_2)$ car f_n converge simplement vers f. Les inégalités larges passent à la limite, d'où $\lim u_n \le \lim v_n$. D'où $f(x_1) \le f(x_2)$. Donc la fonction f est croissante.
- 2. La fonction $f:]a, b[\to \mathbb{R}, \ x \mapsto \frac{1}{(x-a)(b-x)}$ n'est pas bornée. Mais c'est la limite simple de la suite $(f_n)_{n \in \mathbb{N}^*}$ des fonctions $f_n:]a, b[\to \mathbb{R}, \ x \mapsto \begin{cases} f(x) \text{ si } a + \frac{1}{n} \leq x \leq b \frac{1}{n} \\ 0 \text{ sinon} \end{cases}$ qui sont bornées.

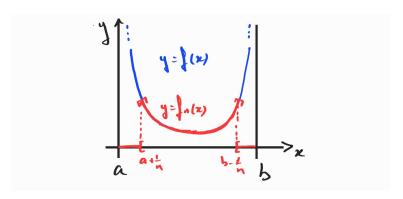


FIGURE 1 – UNE SUITE DE FONCTIONS BORNÉES QUI CONVERGE SIMPLEMENT VERS UNE FONCTION NON BORNÉE.

Et si la convergence est uniforme, alors $\sup_{x\in]a,b[}|f_n(x)-f(x)|\underset{n\to\infty}{\longrightarrow}0$. Il existe donc $N\in\mathbb{N}$ tel que $\sup_{x\in]a,b[}|f_N(x)-f(x)|\leq 1$. Or, pour tout $x\in]a,b[$, $f(x)=f(x)-f_N(x)+f_N(x)$, d'où $|f(x)|\leq |f(x)-f_N(x)|+|f_N(x)|\leq 1+M$, où M est un majorant de la fonction $|f_N|$ (un tel majorant existe car la fonction f_N est bornée). Donc la fonction f est bornée.

3. La suite des fonctions $P_n:]0,1[\to \mathbb{R},\ t\mapsto \sum_{k=0}^n t^k$ converge simplement sur]0,1[vers la fonction $f:]0,1[\to \mathbb{R},\ t\mapsto \frac{1}{1-t}$ car $\forall t\in]0,1[,\ P_n(t)=\frac{1-t^{n+1}}{1-t}\underset{n\to\infty}{\longrightarrow}\frac{1}{1-t}$. Chaque fonction P_n est polynomiale mais la fonction f ne l'est pas.

Et si la convergnce est uniforme? Non plus, car voici un contre-exemple. La suite des fonctions $Q_n:]0,1[\to \mathbb{R}, \ t \mapsto \sum_{k=0} (t/2)^k$ converge simplement sur]0,1[vers la fonction $g:]0,1[\to \mathbb{R}, \ t \mapsto \frac{1}{1-(t/2)}$. Chaque fonction Q_n est polynomiale mais la fonction g ne l'est pas.

Pourtant, la convergence est uniforme sur]0,1[car : $\forall t \in$]0,1[, $|Q_n(t)-g(t)| = \left|\frac{(t/2)^{n+1}}{1-(t/2)}\right| \leq \frac{(1/2)^{n+1}}{1/2}$ qui est un majorant. d'où $\sup_{t\in]0,1[}|Q_n(t)-g(t)| \leq \frac{1}{2^n}$ car le \sup est le plus petit majorant. D'après le théo. des gendarmes, ce \sup tend vers 0.

AUTRE MÉTHODE : soit f une fonction continue sur [0,1], non polynomiale (par exemple, cos). D'après le théorème de Weierstrass, c'est la limite uniforme d'une suite de polynômes P_n sur le segment [0,1], et donc a fortiori aussi sur]0,1[.

Exercice 6. Soit, pour chaque $n \in \mathbb{N}^*$, la fonction f_n définie sur \mathbb{R} par

$$f_n(x) = \frac{2^n x}{1 + 2^n n x^2}.$$

- 1. Étudier la convergence simple sur \mathbb{R} de cette suite de fonctions.
- 2. Calculer $I_n = \int_0^1 f_n(t)dt$ et étudier $\lim_{n \to +\infty} I_n$.
- 3. Montrer que la suite (f_n) ne converge pas uniformément sur [0,1], de deux manières : en utilisant la question précédente et sans l'utiliser.
- 4. Soit a > 0. Montrer que la suite (f_n) converge uniformément sur $[a, +\infty[$.
- 1. Soit $x \in [0,1]$. Si x = 0, alors $f_n(x) = 0$. Si $x \neq 0$, alors $f_n(x) \underset{n \to \infty}{\sim} \frac{2^n x}{n2^n x^2} \sim \frac{1}{nx} \underset{n \to \infty}{\longrightarrow} 0$. Donc la suite (f_n) converge simplement sur [0,1] vers la fonction nulle $f:[0,1] \to \mathbb{R}, \ x \mapsto 0$.

 2. $I_n = \int_0^1 \frac{2^n t}{1 + n2^n t^2} dt = \frac{1}{2n} \int_0^1 \frac{2n2^n t}{1 + n2^n t^2} dt = \frac{1}{2n} \int_0^1 \frac{du}{1 + u}$

2.
$$I_n = \int_0^1 \frac{2^n t}{1 + n2^n t^2} dt = \frac{1}{2n} \int_0^1 \frac{2n2^n t}{1 + n2^n t^2} dt = \frac{1}{2n} \int_0^{n2^n} \frac{du}{1 + u}$$

après le CDV $u=n2^nt^2$ ($du=2n2^ntdt$). La fonction $t\mapsto n2^nt^2$ est bien de classe \mathcal{C}^1 . D'où $I_n=\frac{1}{2n}\left[\ln(1+u)\right]_0^{n2^n}$.

$$\text{Donc } I_n = \frac{\ln(1+n2^n)}{2n} = \frac{\ln(n2^n) + \ln(1+\frac{1}{n2^n})}{2n} = \frac{n\ln 2 + \ln n + \ln(1+\frac{1}{n2^n})}{2n} \underset{n \to \infty}{\longrightarrow} \frac{\ln 2}{2}.$$

3. Par l'absurde : si (f_n) converge uniformément vers 0 (la fonction nulle), alors $\lim_{n\to\infty}\int_0^1 f_n(t)\,dt=\frac{\ln 2}{2}$ est égal à $\int_0^1 \lim_{n\to\infty} f_n(t) dt = 0$. C'est absurde. Donc la convergence n'est pas uniforme.

AUTRE MÉTHODE — Pour tout $n \in \mathbb{N}^*$, $\frac{1}{n} \in [0,1]$ et $\left| f_n\left(\frac{1}{n}\right) - f\left(\frac{1}{n}\right) \right| = \frac{2^n \frac{1}{n}}{1 + 2^n \frac{1}{n}} \underset{n \to \infty}{\sim} 1$ ne tend pas vers zéro quand n tend vers ∞ . Or $\sup_{[0,1]} |f_n - f| \ge \left| f_n\left(\frac{1}{n}\right) - f\left(\frac{1}{n}\right) \right|$, d'où $\sup_{[0,1]} |f_n - f|$ ne tend pas vers zéro quand n tend vers ∞ . Donc la convergence de f_n vers f n'est pas uniforme sur [0,1]

4. Pour tout $x \in [a, +\infty[, |f_n(x) - f(x)| = \left| \frac{2^n x}{1 + n2^n x^2} - 0 \right| \le \frac{2^n x}{n2^n x^2} \le \frac{1}{nx} \le \frac{1}{na}$, qui est un majorant.

D'où $0 \le \sup_{x \in [a, +\infty[]} |f_n(x) - f(x)| \le \frac{1}{na}$ car le \sup est le plus petit majorant.

Donc la suite (f_n) converge uniformément sur $[a, +\infty]$ vers 0 (la fonction nulle).

Exercice 7. Soit la suite des réels $u_n = \int_0^{\pi/4} \tan^n(x) dx$.

- 1. Etudier les variations de la suite (u_n) . En déduire qu'elle converge.
- 2. Déterminer une relation entre u_{n-1} et u_{n+1} . En déduire la limite de (u_n) .
- 3. Retrouver ces résultats en utilisant le théorème de la convergence dominée.
- 1. Pour tout $x \in \left[0, \frac{\pi}{4}\right], 0 \le \tan x \le 1$, d'où $0 \le \tan^{n+1} x \le \tan^n x$.

D'où (croissance de l'intégrale) : $0 \le \int_0^{\pi/4} \tan^{n+1} x \, dx \le \int_0^{\pi/4} \tan^n x \, dx$. D'où la suite (u_n) est décroissante. Et minorée par 0. Donc la suite (u_n) est convergente. 2. $u_{n-1} + u_{n+1} = \int_0^{\pi/4} \tan^{n-1} x \cdot (1 + \tan^2 x) \, dx$. Or $1 + \tan^2 x = \tan' x$.

D'où
$$u_{n-1} + u_{n+1} = \int_0^{\pi/4} \tan^{n-1}(x) \cdot \tan'(x) \, \mathrm{d}x = \left[\frac{\tan^n(x)}{n}\right]_0^{\pi/4} = \frac{1}{n}.$$

Notons ℓ la limite de u_n (on sait que cette limite existe et est réelle car la suite (u_n) converge). L'égalité $u_{n-1}+u_{n+1}=\frac{1}{n}$ passe à la limite et devient : $\ell + \ell = 0$. Donc $\lim u_n = 0$.

- 3. On utilise le théorème de la convergence dominée :
 - * Chaque fonction $f_n: \left[0, \frac{\pi}{4}\right] \to \mathbb{R}, x \mapsto \tan^n(x)$ est continue par morceaux (et même continue).
 - ** f_n converge simplement sur $\left[0, \frac{\pi}{4}\right]$ vers la fonction $f: \left[0, \frac{\pi}{4}\right] \to \mathbb{R}, \ x \mapsto \begin{cases} 0 \text{ si } x \neq \pi/4 \\ 1 \text{ si } x = \pi/4 \end{cases}$, continue par morceaux.

$$\forall x \in [0, \pi/4], |f_n(x)| \le 1$$
 (fonction indépendante de n) et l'intégrale $\int_0^{\pi/4} 1 dx$ converge.

D'où
$$\int_0^{\pi/4} f_n(x) dx \xrightarrow[n \to \infty]{} \int_0^{\pi/4} f(x) dx = 0$$
. Donc $u_n \xrightarrow[n \to \infty]{} 0$.

Exercice 8 (convergence dominée).

1. Montrer que, pour chaque $n \in \mathbb{N}$,

$$v_n = \int_0^{+\infty} \frac{\mathrm{d}x}{x^n + \mathrm{e}^x}$$

est une intégrale convergente.

2. Montrer que la suite des fonctions $f_n: [0, +\infty[\to \mathbb{R}, \ x \mapsto \frac{1}{x^n + \mathrm{e}^x} \text{ converge simplement vers une fonction } f \text{ continue par morceaux.}$

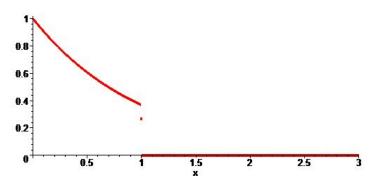


FIGURE 2 – LA LIMITE f DE LA SUITE DES FONCTIONS $f_n: [0,+\infty[\to,\mathbb{R},\ x\mapsto \frac{1}{x^n+\mathrm{e}^x}]$

3. Montrer que la suite (v_n) est une suite convergente et calculer sa limite.

1. Soit, pour chaque $n \in \mathbb{N}$, la fonction $f_n : [0, +\infty[\rightarrow, \mathbb{R}, \ x \mapsto \frac{1}{x^n + e^x}]$.

 $\forall x \in [0, +\infty[, |f_n(x)| \le \frac{1}{\mathrm{e}^x} \text{ et l'intégrale } \int_0^{+\infty} \mathrm{e}^{-x} \, dx \text{ converge, d'où l'intégrale impropre } v_n = \int_0^{+\infty} f_n(x) \, dx \text{ converge.}$

2. Soit $x \in [0, +\infty[: f_n(x) \underset{n \to \infty}{\longrightarrow} \begin{cases} e^{-x} \text{ si } x \in [0, 1[\\ \frac{1}{1+e} \text{ si } x = 1\\ 0 \text{ si } x > 1 \end{cases}$. Donc la suite de fonctions f_n converge simplement sur $[0, +\infty[$ vers la

$$f: [0, +\infty[\to \mathbb{R}, \ x \mapsto e^{-x} \text{ si } x \in [0, 1[, \ \frac{1}{1+e} \text{ si } x = 1 \text{ et } 0 \text{ si } x > 1]]$$

représentée sur la figure 2.

3. On utilise le théorème de la convergence dominée :

* Chaque fonction f_n est continue par morceaux.

** f_n converge simplement sur $[0, +\infty[$ vers la fonction f, continue par morceaux.

*** $\forall x \in [0, +\infty[, |f_n(x)| \le \frac{1}{\mathrm{e}^x}$ (qui ne dépend pas de n) et l'intégrale impropre $\int_0^{+\infty} \mathrm{e}^{-x} \, dx$ converge.

D'où
$$\int_0^{+\infty} f_n(x) dx \xrightarrow[n \to \infty]{} \int_0^{+\infty} f(x) dx = \int_0^1 e^{-x} dx = 1 - \frac{1}{e}$$
. Donc $v_n \xrightarrow[n \to \infty]{} 1 - \frac{1}{e}$.

Exercice 9. Soit, pour chaque $n \in \mathbb{N}^*$, la fonction $f_n : \mathbb{R}^+ \to \mathbb{R}$ définie par

$$f_n(x) = \left(1 + \frac{x}{n}\right)^{-n}.$$

1. Montrer que, pour tout $t \in \mathbb{R}^+$,

$$t - \frac{t^2}{2} \leqslant \ln(1+t) \leqslant t.$$

2. Montrer que la suite de fonctions (f_n) converge simplement sur \mathbb{R}^+ vers une fonction f et que :

$$\forall x \in \mathbb{R}^+, f_n(x) \geqslant f(x).$$

- 3. Soit un réel A > 0.
 - (a) Montrer que, pour tout $x \in [0, A]$, $|f_n(x) f(x)| \le \exp\left(\frac{A^2}{2n}\right) 1$.
 - (b) La suite de fonctions (f_n) converge-t-elle uniformément sur [0, A]?
- 4. Montrer que chaque fonction f_n est décroissante.
- 5. Soit $\varepsilon > 0$. Montrer qu'il existe $N \in \mathbb{N}^*$ et $A \in \mathbb{R}^+$ tels que :

$$\forall n \ge N, \ \forall x \ge A, \quad |f_n(x) - f(x)| \le \varepsilon.$$

- 6. La suite de fonctions (f_n) converge-t-elle uniformément sur \mathbb{R}^+ ?
- 1. On étudie les variations des deux fonctions dérivables

$$g: \mathbb{R}_+ \to \mathbb{R}, \ t \mapsto t - \ln(1+t)$$
 et $h: \mathbb{R}_+ \to \mathbb{R}, \ t \mapsto \ln(1+t) - t + \frac{t^2}{2}$.

Pour tout $t \in \mathbb{R}_+$,

$$g'(t) = 1 - \frac{1}{1+t} = \frac{t}{1+t} \ge 0$$
 et $h'(t) = \frac{1}{1+t} - 1 + t = \frac{t^2}{1+t} \ge 0$.

Elles sont donc croissantes sur \mathbb{R}_+ , or elles sont nulles en 0, donc elles sont positives sur \mathbb{R}_+ :

$$\forall t \ge 0, \ t - \frac{t^2}{2} \le \ln(1+t) \le t.$$

AUTRE MÉTHODE — La concavité de la fonction ln suffit en fait à montrer que : $\forall t > -1$, $\ln(1+t) \le t$.

2. Soit $x \ge 0$: $f_n(x) = \left(1 + \frac{x}{n}\right)^{-n} = \exp\left[-n\ln\left(1 + \frac{x}{n}\right)\right]$. Quand n tend vers ∞ , $\frac{x}{n}$ tend vers 0.

Or (développement limité) :
$$\ln(1+\frac{x}{n}) = \frac{x}{n} + \frac{x}{n}\varepsilon(\frac{x}{n})$$
. D'où $-n\ln(1+\frac{x}{n}) = -x - x\varepsilon(\frac{x}{n}) \underset{n\to\infty}{\longrightarrow} -x$.

D'où (par continuité de exp) : $f_n(x) \underset{n \to \infty}{\longrightarrow} e^{-x}$.

Donc la suite des fonctions f_n converge simplement sur \mathbb{R}_+ vers la fonction $f: \mathbb{R}_+ \to \mathbb{R}, \ x \mapsto \mathrm{e}^{-x}$.

De plus, pour tout $t \geq 0$, $\ln(1+t) \leq t$ (d'après la question 1), d'où : pour tous $x \geq 0$ et $n \in \mathbb{N}^*$, $-n \ln(1+\frac{x}{n}) \geq -n\frac{x}{n}$,

donc (par croissance de exp) : $\forall x \geq 0, \ f_n(x) \geq f(x).$

3. (a) D'après la question 1, pour tous $x \ge 0$ et $n \in \mathbb{N}^*$, $f_n(x) \le e^{-x + \frac{x^2}{2n}}$.

D'où, pour tout
$$x \in [0, A], f_n(x) \le e^{-x} e^{\frac{A^2}{2n}}$$

On en déduit que :
$$f_n(x) - f(x) \le e^{-x} \left[e^{\frac{A^2}{2n}} - 1 \right] \le e^{\frac{A^2}{2n}} - 1.$$

De plus,
$$0 \le f_n(x) - f(x)$$
 d'après la question 2. Donc

$$\forall n \in \mathbb{N}^*, \ \forall x \in [0, A], \ |f_n(x) - f(x)| \le e^{\frac{A^2}{2n}} - 1.$$

(b) De la majoration précédente, on déduit que, pour tout $n \in \mathbb{N}^*$, $\sup_{[0,A]} |f_n - f| \le e^{\frac{A^2}{2n}} - 1$.

Or
$$e^{\frac{A^2}{2n}} - 1 \xrightarrow[n \to \infty]{} 0$$
. D'où $\sup_{[0,A]} |f_n - f| \xrightarrow[n \to \infty]{} 0$.

Donc la suite des fonctions f_n converge uniformément sur [0,A] vers la fonction f.

4. Chaque fonction f_n est dérivable et, pour tout $x \ge 0$, $f'_n(x) = -n(1+\frac{x}{n})^{-n-1} \cdot \frac{1}{n} \le 0$.

Donc chaque fonction f_n est décroissante sur \mathbb{R}_+ .

5. Pour tous $n \in \mathbb{N}^*$ et $x \in [A, +\infty[$,

$$|f_n(x) - e^{-x}| = f_n(x) - e^{-x}$$

$$\leq f_n(A) - e^{-x} \text{ (d'après la question 4)}$$

$$\leq f_n(A) - e^{-A} + e^{-A} - e^{-x}$$

Soit $\varepsilon > 0$:

- si A est assez grand, alors $e^{-A} \le \frac{\varepsilon}{2}$, d'où $e^{-A} e^{-x} \le \frac{\varepsilon}{2}$;
- si n est assez grand, alors $|f_n(A) e^{-A}| \le \frac{\varepsilon}{2}$ (car f_n converge simplement vers f).

Donc
$$\exists A \in \mathbb{R}_+, \ \exists N_A \in \mathbb{N}^*, \ \forall n \ge N_A, \ \forall x \ge A, \ |f_n(x) - e^{-x}| \le \varepsilon.$$

6. On a montré que, pour tout A, la suite des fonctions f_n converge uniformément sur [0, A] vers f, d'où :

$$\exists N' \in \mathbb{N}^*, \ \forall n \ge N', \ \forall x \in [0, A], \ |f_n(x) - f(x)| \le \varepsilon.$$

Choisissons le A et le N de la question 5 et posons $N'' = \max(N, N')$. Alors

$$\forall n \ge N'', \ \forall x \in [0, A] \cup [A, +\infty[, |f_n(x) - e^{-x}| \le \varepsilon.$$

Donc la suite des fonctions f_n converge uniformément sur $[0, +\infty[$ vers f.

Exercice 10. Soit une fonction $f: \mathbb{R}_+ \to \mathbb{R}_+$ continue telle que l'intégrale généralisée $\int_0^{+\infty} f(t) dt$ converge.

- 1. La fonction f a-t-elle nécessairement une limite en $+\infty$?
- 2. Montrer que, si la limite existe, alors elle est nécessairement nulle.
- 3. Montrer que, si f est uniformément continue, alors $\lim_{x\to +\infty} f(x) = 0$.
- 1. Voir un contre-exemple sur la figure et la ⊳ remarque 7 du chapitre III.
- 2. Raisonnons par l'absurde et montrons que si la limite est non nulle, l'intégrale ne peut pas converger absolument.

Premier cas : si la limite est finie. Soit $\ell \neq 0$ la limite de f. Il existe $x_0 \in \mathbb{R}_+$ tel que :

$$\forall x \ge x_0, \quad f(x) \ge \frac{\ell}{2}$$

On en déduit que :

$$\int_{x_0}^x f(x)dx \ge \int_{x_0}^x \frac{\ell}{2}dx = \frac{\ell}{2}(x - x_0) \underset{x \to +\infty}{\to} +\infty$$

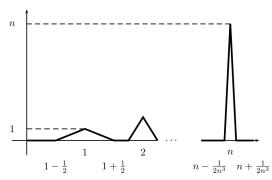


FIGURE 3 – Pas de divergence grossière pour les intégrales généralisées

et donc l'intégrale ne peut pas converger.

SECOND CAS : si la limite vaut $\pm \infty$. Il existe $x_0 \in \mathbb{R}_+$ tel que :

$$\forall x \ge x_0, \quad f(x) \ge 17.$$

Et on conclut comme dans le premier cas.

3. Une nouvelle fois, raisonnons par l'absurde. Supposons que f(x) ne tend pas vers 0 et que f est uniformément continue. Montrons que l'intégrale diverge. La fonction ne tend pas vers 0, d'où : il existe un réel $\varepsilon > 0$ et il existe une suite $(x_n)_{n \in \mathbb{N}}$ de réels positifs telle que $x_n \xrightarrow[n \to \infty]{} +\infty$ et

$$\forall n \in \mathbb{N}, \quad f(x_n) > \epsilon.$$

Par la continuité uniforme, pour cet epsilon :

$$\exists \alpha>0, \forall x\in\mathbb{R}_+, \quad |x_n-x|<\frac{\alpha}{2}\Rightarrow |f(x)-f(x_n)|<\frac{\varepsilon}{2} \quad \left(\mathrm{d}\text{'où }|f(x)|>\frac{\varepsilon}{2}\right)$$

On peut ensuite extraire de la suite (x_n) une sous-suite $(u_n)_{n\in\mathbb{N}}$ telle que :

$$\forall n \in \mathbb{N}^*, \quad u_n > u_{n-1} + \alpha.$$

Finalement:

$$\forall n \in \mathbb{N}^*, \int_0^{u_n + \frac{\alpha}{2}} f(x) dx \geq n\alpha \frac{\epsilon}{2} \underset{n \to \infty}{\to} +\infty.$$

L'intégrale ne peut donc pas converger.