COLLE Nº 08

Réduction & suites de fonctions

Exercice 1 (Diagonaliser la transposée). Soient $n \in \mathbb{N}^*$ et $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

- 1. Montrer que : si une matrice $P \in \mathcal{M}_{nn}(\mathbb{K})$ est inversible, alors sa transposée P^T l'est aussi. Exprimer alors $(P^T)^{-1}$ en fonction de P^{-1} .
- 2. Montrer qu'une matrice $A \in \mathcal{M}_{nn}(\mathbb{K})$ et sa transposée ont le même spectre.

On suppose désormais que la matrice A est diagonalisable.

- 3. Montrer que A^T est diagonalisable et comparer les dimensions des sep de A et de A^T .
- 4. Soit P une matrice inversible telle que $P^{-1} \cdot A \cdot P = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. Pour chaque $j \in [\![1, n]\!]$, on note C_j la j-ième colonne de la matrice P et $X_j = (P^T)^{-1} \cdot P^{-1} \cdot C_j$.

 $\text{Montrer que}: \quad \forall (i,j) \in [\![1,n]\!]^2, \quad X_i^T \cdot C_i = \delta_{ij}.$

- 5. En déduire que : $A = \sum_{j=1}^{n} \lambda_j C_j \cdot X_j^T.$
- 6. Calculer $A^T \cdot X_i$ et conclure.

Exercice 2 (Convergence dominée).

- 1. (a) Montrer que, pour chaque $n \in \mathbb{N}^*$, l'intégrale impropre $u_n = \int_1^{+\infty} e^{-x^n} dx$ est convergente.
 - (b) Etudier la limite de la suite (u_n) .
- 2. (a) Montrer que l'intégrale impropre $A = \int_1^{+\infty} \frac{e^{-x}}{x} dx$ est convergente.
 - (b) Montrer que, pour chaque $n \in \mathbb{N}^*$: $nu_n = \int_1^{+\infty} \frac{e^{-t}}{t^{1-\frac{1}{n}}} dt$.
 - (c) En déduire que : $u_n \underset{n\to\infty}{\sim} \frac{A}{n}$.
- 3. (a) Etudier la limite de la suite $v_n = \int_0^1 e^{-x^n} dx$.
 - (b) Soit, plus généralement, une fonction $f:[0,1]\to\mathbb{R}$ continue. Etudier la limite, quand n tend vers l'infini, de $\int_0^1 f(x^n) dx$.