Chapitre VII Séries de fonctions

Table des matières

VII.1	Trois manières de converger	59
VII.1	1 Convergence simple et convergence uniforme	59
VII.1	2 Convergence normale	60
VII.2	Continuité	61
VII.3	Intégrer	61
VII.4	Dériver	62

VII.1 Trois manières de converger

VII.1.1 Convergence simple et convergence uniforme

Définition 1

Soit une suite de fonctions f_n . Pour chaque $n \in \mathbb{N}$, la fonction $S_n: x \mapsto \sum_{k=0}^n f_k(x)$ est appelée *la somme partielle d'ordre* n. Soient I une partie de \mathbb{R} et S une fonction. On dit que la série de fonctions $\sum f_n:$

1. **converge simplement** sur I vers S si la série de réels $\sum f_n(x)$ converge pour chaque $x \in I$. Autrement dit, si la suite des fonctions S_n converge simplement sur I vers la fonction S:

$$\forall x \in I, \quad |S_n(x) - S(x)| \underset{n \to \infty}{\longrightarrow} 0.$$

2. **converge uniformément** sur I vers S si la suite des fonctions S_n converge uniformément sur I vers la fonction S:

$$\sup_{x \in I} |S_n(x) - S(x)| \underset{n \to \infty}{\longrightarrow} 0.$$

Remarque 2 — Si la série de fonctions $\sum f_n$ converge simplement sur I vers S, alors :

- 1. la fonction S est définie sur I et, pour chaque $x \in I$, $S(x) = \sum_{k=0}^{\infty} f_k(x)$;
- 2. la fonction $R_n = S S_n$, appelée le reste d'ordre n, est définie sur I et

$$\forall x \in I, \quad R_n(x) = \sum_{k=n+1}^{\infty} f_k(x) ;$$

3. la suite de fonctions R_n converge simplement sur I vers 0 (la fonction nulle).

Méthode 3 — La série de fonctions $\sum f_n$ converge uniformément sur I vers la fonction S

- \iff la suite de fonctions R_n converge uniformément sur I vers 0;
- \implies la suite de fonctions f_n converge uniformément sur I vers 0.

Preuve — (\iff) Par définition, la suite $R_n = S - S_n$ converge uniformément vers 0 si, et seulement si, la suite S_n converge uniformément vers S.

 $(\Longrightarrow) \ f_n=R_{n-1}-R_n, \ \text{d'où}: \ \text{pour tout} \ x\in I, \ |f_n(x)|\leq |R_{n-1}(x)|+|R_n(x)|\leq \sup_{x\in I}|R_{n-1}(x)|+\sup_{x\in I}|R_n(x)|, \ \text{d'où} \\ \sup_{x\in I}|f_n(x)|\leq \sup_{x\in I}|R_{n-1}(x)|+\sup_{x\in I}|R_n(x)|. \ \text{Or on vient de montrer que la suite de fonctions} \ R_n \ \text{converge uniformément vers} \\ 0. \ \text{Donc la suite de fonctions} \ f_n \ \text{aussi.}$

Exercice 4 — Soit $f_n(x) = x^n$. Montrer que:

- 1. la série de fonctions $\sum f_n$ converge simplement sur]-1,+1[vers la fonction $S:x\mapsto \frac{1}{1-x};$
- 2. elle ne converge pas uniformément sur]-1,+1[;
- 3. elle converge uniformément sur tout segment inclus dans]-1,+1[.

VII.1.2 Convergence normale

DÉFINITION 5

Soit I une partie de \mathbb{R} . On dit qu'une série de fonctions $\sum f_n$ converge normalement sur I s'il existe une suite de réels u_n tels que

$$\begin{cases} \forall n \in \mathbb{N}, \forall x \in I, \quad |f_n(x)| \leq u_n \\ \text{et la série de réels } \sum u_n \text{ converge.} \end{cases}$$

Remarque 6 — La série de fonctions $\sum f_n$ converge normalement sur I si, et seulement si, la série de réels $\sum \sup_{x \in I} |f_n(x)|$ converge.

Preuve — On sait déjà que : convergence uniforme \implies convergence simple.

Montrons que : convergence normale \implies convergence uniforme.

Soit $x \in I : |R_n(x)| = \left| \sum_{k=n+1}^{\infty} f_k(x) \right| \le \sum_{k=n+1}^{\infty} |f_k(x)| \le \sum_{k=n+1}^{\infty} u_k$. (Toutes ces séries convergent car il y a convergence

normale.) D'où $\sup_{x\in I} |R_n(x)| \le r_n$, où $r_n = \sum_{k=n+1}^{\infty} u_k$ est le reste de la série convergente $\sum u_k$. D'où $r_n \xrightarrow[n\to\infty]{} 0$. Donc $\sup_{x\in I} |R_n(x)| \xrightarrow[n\to\infty]{} 0$. Donc (méthode 3) la série de fonctions $\sum f_n$ converge uniformément sur I.

Les réciproques sont fausses : d'après l'exercice 4, convergence uniforme \Leftarrow convergence simple. Et d'après l'exercice 8, convergence normale \Leftarrow convergence uniforme.

Exercice 8 — Soit, pour chaque $n \in \mathbb{N}^*$, la fonction f_n définie sur \mathbb{R} par

$$f_n(x) = \frac{(-1)^n}{n+x^2}.$$

Montrer que :

- 1. la série de fonctions $\sum f_n$ converge simplement sur \mathbb{R} .
- 2. elle ne converge pas normalement sur \mathbb{R} .
- 3. elle converge uniformément sur \mathbb{R} .

VII.2 Continuité

Théorème 9

Soient I un intervalle de \mathbb{R} et $a \in I$. Soit, pour chaque $n \in \mathbb{N}$, une fonction f_n continue en a. Si la série $\sum f_n$ converge uniformément sur I vers une fonction S, alors S est aussi continue en a.

Preuve — Soit $S_n = \sum_{k=1}^n f_k$ la somme partielle d'ordre n. La suite de fonctions S_n converge uniformément sur I vers S et, pour chaque n, la fonction S_n est continue en a, d'où (théorème V.6) la fonction S est continue en a.

Corollaire 10

Soit I un intervalle de \mathbb{R} . Si une série $\sum f_n$ de fonctions continues sur I converge uniformément sur I vers une fonction S, alors S est aussi continue sur I.

Exercice 11 — Soit la série de fonctions $\sum x^n(1-x)$. Montrer qu'elle converge simplement sur [0,1]. Cette convergence est-elle uniforme sur [0,1]?

THÉORÈME 12 (de la double limite ou d'interversion somme-limite)

Soient une suite de fonctions f_n définies sur un intervalle I et a une extrémité (éventuellement infinie) de cet intervalle. Si la série de fonctions $\sum f_n$ converge uniformément sur I vers une fonction S et si chaque

fonction f_n admet une limite finie b_n en a, alors la série de réels $\sum b_n$ converge et $\lim_{x\to a} S(x) = \sum_{n=0}^\infty b_n$:

$$\lim_{x \to a} \sum_{n=0}^{\infty} f_n(x) = \sum_{n=0}^{\infty} \lim_{x \to a} f_n(x).$$

Preuve — Appliquer le théorème V.9 à la suite des sommes partielles $S_n = \sum_{k=1}^n f_k$.

Exercice 13 (suite de l'exercice 8) — Soit la fonction S définie $sur \mathbb{R}$ par

$$S(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n + x^2}.$$

Montrer (de deux manières) que : $\lim_{x \to +\infty} S(x) = 0$.

VII.3 INTÉGRER

L'objectif du théorème suivant est d'intégrer terme à terme une série de fonctions, autrement dit d'intervertir \sum_{a}^{∞} et \int_{a}^{b} .

THÉORÈME 14 (d'intégration terme à terme sur un segment)

Soient un segment [a,b] et, pour chaque $n\in\mathbb{N}$, une fonction f_n continue sur le segment [a,b]. Si la série de fonctions $\sum f_n$ converge uniformément sur [a,b], alors la fonction $\sum_{n=0}^{\infty} f_n$ est continue sur [a,b] et

$$\int_{a}^{b} \sum_{n=0}^{\infty} f_n(t) \, dt = \sum_{n=0}^{\infty} \int_{a}^{b} f_n(t) \, dt.$$

Preuve — Appliquer le théorème V.10 à la suite des sommes partielles $S_n = \sum_{k=1}^{n} f_k$.

EXERCICE 15 — Montrer que, pour tout
$$x \in]-1,+1[$$
, $\ln(1-x)=-\sum_{n=0}^{\infty}\frac{x^{n+1}}{n+1}.$

Il existe un autre théorème d'intégration terme à terme (que nous admettrons), qui ne réclame ni que la convergence soit uniforme ni que l'intervalle soit un segment :

THÉORÈME 16 (d'intégration terme à terme sur un intervalle quelconque)

Soient un intervalle I et une suite de fonctions continues par morceaux et intégrables sur I. Si :

- 1. Ia série de fonctions $\sum f_n$ converge simplement sur I vers une fonction S cpm sur I;
- 2. la série de réels $\sum \int_I |f_n(t)| \, dt$ converge;

alors S est intégrable sur I et $\sum_{n=0}^{\infty} \int_{I} f_n(t) dt = \int_{I} S(t) dt$.

Exercice 17 — Montrer que l'intégrale $\int_0^{+\infty} \frac{x}{\mathrm{e}^x - 1} \, dx$ est convergente et qu'elle vaut $\sum_{k=1}^{\infty} \frac{1}{k^2}$.

VII.4 DÉRIVER

L'objectif du théorème suivant est de dériver terme à terme une série de fonctions, autrement dit d'intervertir $\sum_{n=0}^{\infty}$ et $\frac{d}{dx}$.

Théorème 18 (de dérivation terme à terme)

Soient un segment [a,b] et, pour chaque $n \in \mathbb{N}$, une fonction f_n de classe \mathcal{C}^1 sur [a,b]. Si :

- (i) la série de fonctions $\sum f_n$ converge simplement sur [a,b] vers une fonction S; (ii) la série de fonctions $\sum f'_n$ converge uniformément sur [a,b];

alors la fonction S est de classe \mathcal{C}^1 sur [a,b] et $\forall x \in [a,b], \ S'(x) = \sum_{n=0}^{\infty} f'_n(x).$

Preuve — Appliquer le théorème V.15 à la suite des sommes partielles S_n .

Corollaire 19

Soit $k\in\mathbb{N}^*.$ Soit une suite de fonctions f_n de classe \mathcal{C}^k sur un intervalle I. Si :

- (i) pour chaque $j\in [\![0,k-1]\!]$, la série de fonctions $\sum f_n^{(j)}$ converge simplement sur I; (ii) la série de fonctions $\sum f_n^{(k)}$ converge uniformément sur I;

 $\text{alors la fonction } \sum_{n=0}^{\infty} f_n \text{ est de classe } \mathcal{C}^k \text{ sur } I \text{ et } \forall j \in \llbracket 0, k \rrbracket, \ \forall x \in I, \ \left(\sum_{n=0}^{\infty} f_n\right)^{(j)}(x) = \sum_{n=0}^{\infty} f_n^{(j)}(x).$