LYCÉE CLEMENCEAU MPI/MPI*

Corrigé du Kdo du 21/11/2025

 $P \ robabilités$

(extrait du DS nº 4 du 14/12/2024)

On lance indéfiniment une pièce qui tombe à chaque fois sur PILE avec la probabilité $\frac{2}{3}$ ou sur FACE avec la probabilité $\frac{1}{3}$. On note, pour chaque $k \in \mathbb{N}^*$, F_k l'événement « La pièce tombe sur FACE au k-ième lancer ».

- 1. Le premier PILE. Soit, pour chaque $n \in \mathbb{N}^*$, l'événement E_n : « Le premier PILE apparaît au n-ième lancer ». Par exemple, si les premiers lancers donnent « FACE, FACE, PILE », alors l'événement E_3 est réalisé.
 - (a) Calculer, pour chaque $n \in \mathbb{N}^*$, la probabilité $v_n = P(E_n)$.
 - (b) Quelle est la probabilité que la pièce tombe au moins une fois sur PILE?
- 2. Le premier double PILE. Soit, pour chaque $n \in \mathbb{N}^*$, l'événement D_n : « Le premier double PILE apparaît au n—ième lancer ». Par exemple, si les premiers lancers donnent « PILE, FACE, FACE, PILE, FACE, PILE, PILE », alors l'événement D_7 est réalisé.
 - (a) On note, pour chaque $n \in \mathbb{N}^*$, $u_n = P(D_n)$. (La probabilité u_1 vaut 0.) Calculer u_2 .
 - (b) Exprimer $P(D_{n+2} \mid F_1)$ et $P(D_{n+2} \mid \overline{F_1} \cap F_2)$ en fonction de u_n et de u_{n+1} .
 - (c) En déduire que :

$$\forall n \in \mathbb{N}^*, \quad u_{n+2} = \frac{1}{3} \cdot u_{n+1} + \frac{2}{9} \cdot u_n.$$

- (d) Calculer u_n en fonction de $n \in \mathbb{N}^*$.
- (e) En déduire la probabilité de l'événement « On n'obtient jamais de double PILE ».

1. (a) Soit $n \in \mathbb{N}^*$: $E_n = F_1 \cap \cdots \cap F_{n-1} \cap \overline{F_n}$ et ces événements sont indépendants, donc

$$P(E_n) = P(F_1) \times \cdots \times P(F_{n-1}) \times P(\overline{F_n}) = \frac{2}{3^n}.$$

(b) Les événements E_n sont disjoints deux à deux, d'où : par σ -additivité, $P\left(\bigcup_{n\in\mathbb{N}^*}E_n\right)=\sum_{n=1}^\infty P(E_n)=\sum_{n=1}^\infty \frac{2}{3^n}=\sum_{n=1}^\infty P(E_n)$

 $\frac{2}{3}\sum_{k=0}^{\infty}\left(\frac{1}{3}\right)^k=\frac{2}{3}\frac{1}{1-\frac{1}{3}}=1. \text{ Donc l'événement }\bigcup_{n\in\mathbb{N}^*}E_n \text{ « la pièce tombe au moins une fois sur PILE » est presque certain.}$

AUTRE MÉTHODE — Le contraire de l'événement « la pièce tombe au moins une fois sur PILE » est l'événement « la pièce tombe toujours sur FACE », égal à $\bigcap_{n\in\mathbb{N}^*} F_n$. Par continuité décroissante, $P\left(\bigcap_{n\in\mathbb{N}^*} F_n\right) = \lim_{n\to\infty} P\left(\bigcap_{k=1}^n F_n\right)$. Or, pour chaque $n\in\mathbb{N}^*$, $P\left(\bigcap_{k=1}^n F_k\right) = \left(\frac{1}{3}\right)^n$ car les événements F_k sont indépendants.

- 2. (a) $D_2 = \overline{F_1} \cap \overline{F_2}$ et ces événements sont indépendants, donc $P(D_2) = P(\overline{F_1}) \cdot P(\overline{F_2}) = \frac{4}{9}$.
 - (b) $P(D_{n+2} | F_1) = u_{n+1}$ car on sait que la pièce tombe la première fois sur FACE (ce qui remet le compteur à zéro). Donc D_{n+2} se réalise si, et seulement si, on obtient le premier double PILE après encore n+1 lancers.

 $P(D_{n+2} \mid \overline{F_1} \cap F_2) = u_n$ car on sait que la pièce tombe la première fois sur Pile et la deuxième fois sur Face (ce qui remet le compteur à zéro). Donc D_{n+2} se réalise si, et seulement si, on obtient le premier double PILE après encore n lancers.

(c) $D_{n+2} = (D_{n+2} \cap F_1) \bigcup (D_{n+2} \cap \overline{F_1})$ et $D_{n+2} \cap \overline{F_1} = (D_{n+2} \cap \overline{F_1} \cap F_2) \bigcup (D_{n+2} \cap \overline{F_1} \cap \overline{F_2}) = D_{n+2} \cap \overline{F_1} \cap F_2$ car l'événement $D_{n+2} \cap \overline{F_1} \cap \overline{F_2}$ est impossible.

D'où $D_{n+2}=(D_{n+2}\cap F_1)\bigcup \left(D_{n+2}\cap \overline{F_1}\cap F_2\right)$. L'union est disjointe, d'où

$$P(D_{n+2}) = P(D_{n+2} \cap F_1) + P(D_{n+2} \cap \overline{F_1} \cap F_2).$$

Or $P(D_{n+2} \cap F_1) = P(F_1) \cdot P(D_{n+2} \mid F_1) = \frac{1}{3} \cdot P(D_{n+2} \mid F_1)$ et

 $P\left(D_{n+2}\cap\overline{F_1}\cap F_2\right)=P\left(\overline{F_1}\cap F_2\right)\cdot P\left(D_{n+2}\mid\overline{F_1}\cap F_2\right)=\frac{1}{3}\frac{2}{3}\cdot P\left(D_{n+2}\mid\overline{F_1}\cap F_2\right)$ car les événements $\overline{F_1}$ et F_2 sont indépendants. Donc

$$u_{n+2} = \frac{1}{3} \cdot u_{n+1} + \frac{2}{9} \cdot u_n.$$

(d) L'équation caractéristique de la suite (u_n) est $\lambda^2 = \frac{1}{3}\lambda + \frac{2}{9}$. Elle a deux solutions distinctes : $-\frac{1}{3}$ et $\frac{2}{3}$. D'où $\exists K \in \mathbb{R}, \ \exists L \in \mathbb{R}, \ \forall n \in \mathbb{N}^*, \ u_n = K \cdot \left(-\frac{1}{3}\right)^n + L \cdot \left(\frac{2}{3}\right)^n$. Les constantes K et L sont fixées par les deux conditions initiales $u_1 = 0$ et $u_2 = \frac{4}{9}$. D'où $K = \frac{4}{3}$ et $L = \frac{2}{3}$. Donc

$$\forall n \in \mathbb{N}^*, \quad u_n = \frac{4}{3} \cdot \left(-\frac{1}{3}\right)^n + \frac{2}{3} \cdot \left(\frac{2}{3}\right)^n.$$

(e) L'événement « On n'obtient jamais de double PILE » est le contraire \overline{D} de l'événement $D = \bigcup_{n \in \mathbb{N}^*} D_n$. L'union est

disjointe, d'où : par σ -additivité, $P(D) = \sum_{n=1}^{\infty} u_n = K \cdot \left(-\frac{1}{3}\right) \frac{1}{1 - \frac{1}{3}} + L \cdot \frac{2}{3} \frac{1}{1 - \frac{2}{3}} = 1$. Donc $P(\overline{D}) = 1 - P(D) = 0$. L'événément \overline{D} est donc presque impossible.