CORRIGÉ DU T.D. Nº 7

Séries de fonctions

20 novembre 2025

Exercice 1. Soient l'intervalle $I =]1, +\infty[$ et, pour chaque $k \in \mathbb{N}^*$ et chaque $x \in I$,

$$f_k(x) = \frac{(-1)^{k-1}}{\ln(k \cdot x)}.$$

- 1. Montrer que la série de fonctions $\sum f_k$ converge simplement sur I.
- 2. Soient, pour chaque $n \in \mathbb{N}^*$ et chaque $x \in I$,

$$S(x) = \sum_{k=1}^{\infty} f_k(x)$$
 , $S_n(x) = \sum_{k=1}^{n} f_k(x)$ et $R_n(x) = \sum_{k=n+1}^{\infty} f_k(x)$.

Montrer que la fonction S est continue sur I.

- 3. Étudier, de deux manières (en utilisant le théorème des séries alternées ou en utilisant le théorème de la double limite), $\lim_{x\to +\infty} S(x)$.
- 4. Montrer que la fonction S est dérivable sur I. La fonction S est-elle (strictement) (dé)croissante sur I?
- 1. Soit x > 1: la suite $\left(\frac{1}{\ln(kx)}\right)_{k \in \mathbb{N}^*}$ tend vers 0 en décroissant, d'où (théorème des séries alternées) la série $\sum \frac{(-1)^{k-1}}{\ln(k \cdot x)}$ est convergente.

Donc la série de fonctions $\sum f_n$ converge simplement sur $I=]1,+\infty[$.

2. Soit x > 1: d'après le théorème des séries alternées, $|R_n(x)| \le \left|\frac{1}{\ln[(n+1)x]}\right| \le \frac{1}{\ln(n+1)}$ qui est un majorant.

D'où
$$\sup_{x\in I} |R_n(x)| \leq \frac{1}{\ln(n+1)}$$
 car le \sup est le plus petit majorant. Or $\frac{1}{\ln(n+1)} \xrightarrow[n \to \infty]{} 0$.

D'où $\sup_{x\in I} |R_n(x)| \underset{n\to\infty}{\longrightarrow} 0$ d'après le théorème des gendarmes. Donc la série de fonctions $\sum f_n$ converge uniformément sur I

vers la fonction $S = \sum_{k=1}^{\infty} f_k$. Or chaque fonction f_n est continue sur I. Donc la fonction S est continue sur I.

3. D'après le théorème des séries alternées, pour tout $x \in I$, $\frac{1}{\ln x} - \frac{1}{\ln(2x)} \le S(x) \le \frac{1}{\ln x}$.

Donc (théorème des gendarmes) : $S(x) \xrightarrow[x \to +\infty]{} 0$.

AUTRE MÉTHODE : On utilise le « théorème d'interversion somme-limite » ou « de la double limite ».

La série de fonctions $\sum f_n$ converge uniformément sur $I=]1,+\infty[$ et chaque fonction f_n admet une limite finie en $+\infty$ car $\lim_{x\to +\infty} f_n(x)=0$. Donc $\lim_{x\to +\infty} S(x)=\sum_{n=1}^\infty 0=0$.

- 4. Soit $x \in I$: la fonction f_n est dérivable en x et $f'_n(x) = \frac{(-1)^n}{x \ln^2(nx)}$. La fonction $x \mapsto f'_n(x)$ est continue sur I, d'où f_n est de classe \mathcal{C}^1 . Pour chaque $x \in I$, a série $\sum f'_n(x)$ est alternée, d'où (de même que pour la question 2, on montre que) la série $\sum f'_n$ converge uniformément sur I.
 - D'où $\begin{cases} \text{la série } \sum f_n \text{ converge simplement sur } I \\ \text{la série } \sum f'_n \text{ converge uniformément sur } I \end{cases}$, donc (théorème de dérivation terme à terme) :

— la fonction S est de classe C^1 sur I;

— pour tout
$$x \in I$$
, $S'(x) = \sum_{n=1}^{\infty} f'_n(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{x \ln^2(nx)}$.

Or (théorème des séries alternées) : $S'(x) \le \frac{-1}{x \ln^2(x)} + \frac{1}{x \ln^2(2x)} < 0$ pour tout $x \in I$.

Donc S est strictement décroissante sur I.

Exercice 2. Soit, pour chaque $n \in \mathbb{N}^*$, la fonction f_n définie sur \mathbb{R} par

$$f_n(x) = \frac{1}{n^2 + x^2}.$$

- 1. Montrer que la série de fonctions $\sum f_n$ converge sur $\mathbb R$: normalement ? uniformément ? simplement ?
- 2. Soit $x \neq 0$. Montrer que les intégrales

$$\int_0^{+\infty} \frac{1}{t^2 + x^2} dt \qquad \text{et} \qquad \int_1^{+\infty} \frac{1}{t^2 + x^2} dt$$

sont convergentes et les calculer (en prenant garde au signe du réel x).

- 3. Soit, pour tout $x \in \mathbb{R}$, $S(x) = \sum_{n=1}^{\infty} f_n(x)$. Montrer que $S(x) \underset{x \to +\infty}{\sim} \frac{\pi}{2x}$.
- 4. Montrer que la fonction S est de classe \mathcal{C}^1 sur \mathbb{R} .
- 1. Pour tout $x \in \mathbb{R}$, $|f_n(x)| \le \frac{1}{n^2}$ et la série $\sum \frac{1}{n^2}$ converge. Donc la série de fonctions $\sum f_n$ converge normalement (donc uniformément, donc simplement) sur \mathbb{R} .
- 2. Soit $x \neq 0$: l'intégrale $\int_0^{+\infty} \frac{1}{t^2 + x^2} dt$ est impropre en $+\infty$. Soit a > 0. Pour calculer $\int_0^a \frac{1}{x^2 + t^2} dt$, on fait le changement de variable $u = \frac{t}{x}$: la fonction $t \mapsto \frac{t}{x}$ est de classe \mathcal{C}^1 , d'où $\int_0^a \frac{1}{x^2 + t^2} dt = \frac{1}{x^2} \int_0^{a/x} \frac{1}{1 + u^2} x \, du = \frac{1}{x} \operatorname{Arctan}\left(\frac{a}{x}\right)$. Or $\frac{1}{x} \operatorname{Arctan}\left(\frac{a}{x}\right) \xrightarrow[a \to +\infty]{\pi}$. Donc l'intégrale $\int_0^{+\infty} \frac{1}{x^2 + t^2} \, dt$ converge et vaut $\frac{\pi}{2|x|}$.

De même, l'intégrale $\int_{1}^{+\infty} \frac{1}{x^2 + t^2} dt$ converge et vaut $\frac{\pi}{2|x|} - \frac{1}{x} \operatorname{Arctan}\left(\frac{1}{x}\right)$.

3. Soient $N \in \mathbb{N}^*$ et x > 0. On compare série et intégrale : la fonction $t \mapsto \frac{1}{x^2 + t^2}$ étant décroissante,

$$\int_{1}^{N+1} \frac{1}{x^2 + t^2} dt \le \sum_{n=1}^{N} f_n(x) \le \int_{0}^{N} \frac{1}{x^2 + t^2} dt.$$

Ces inégalités larges passent à la limite $N \to \infty$ car la série converge (d'après la question 1) et parce que les intégrales convergent (d'après la question 2), d'où :

$$\int_{1}^{+\infty} \frac{1}{x^2 + t^2} dt \le \sum_{n=1}^{\infty} f_n(x) \le \int_{0}^{+\infty} \frac{1}{x^2 + t^2} dt.$$

D'où (en divisant par $\frac{\pi}{2x}$ qui est strictement positif) :

$$1 - \frac{2}{\pi} \operatorname{Arctan}\left(\frac{1}{x}\right) \le \frac{S(x)}{\frac{\pi}{2x}} \le 1.$$

D'où (théorème des gendarmes) $\frac{S(x)}{\frac{\pi}{2x}} \xrightarrow[x \to +\infty]{} 1$. Donc $S(x) \underset{x \to \infty}{\sim} \frac{\pi}{2x}$.

- 4. Pour chaque $n \in \mathbb{N}^*$, la fonction f_n est dérivable. Pour tout $x \in \mathbb{R}$, $f'_n(x) = \frac{-2x}{(n^2 + x^2)^2}$. D'où f'_n est continue, donc f_n est de classe \mathcal{C}^1 . Soit a > 0:
 - la série de fonctions $\sum f_n$ converge simplement sur [-a, +a];

d'où la série de fonctions $\sum f'_n$ converge uniformément (car normalement) sur [-a, +a];

— donc la fonction S est de classe C^1 sur [-a, +a].

C'est vrai pour tout a > 0. Donc S est de classe C^1 sur \mathbb{R} .

Exercice 3. Soit, pour chaque $n \in \mathbb{N}^*$, la fonction f_n définie, pour tout $x \in [0, +\infty[$, par

$$f_n(x) = \frac{x}{\sqrt{n}(x+n)}.$$

- 1. Montrer que la série de fonctions $\sum f_n$ converge simplement sur $[0, +\infty[$.
- 2. Etudier $\sup_{[0,+\infty[} |f_n|$. La convergence de la série de fonctions $\sum f_n$ est-elle normale sur $[0,+\infty[$?
- 3. Soit, pour tout $x \in [0, +\infty[$, $S(x) = \sum_{n=1}^{\infty} f_n(x)$. Montrer que la fonction S est de classe \mathcal{C}^1 sur $[0, +\infty[$.
- 4. Montrer que la fonction S est croissante sur $[0,+\infty[.$
- 5. Soient un entier $n \ge 1$ et un réel $a \ge n$. Montrer que $S(a) \ge \sum_{k=1}^{n} \frac{1}{2\sqrt{k}}$.
- 6. En déduire $\lim_{x\to +\infty} S(x)
 ightharpoonup$ trois méthodes dans le corrigé.
- 7. Montrer que S(x) = o(x).
- 8. En utilisant le théorème de la double limite, montrer que la convergence de la série $\sum f_n$ n'est pas uniforme sur $[0, +\infty[$.
- 1. Soit $x \in [0, +\infty[: 0 \le f_n(x) \le \frac{x}{n^{3/2}}]$. Or la série $\sum \frac{1}{n^{3/2}}$ converge, d'où la série $\sum f_n(x)$ converge.

Donc la série de fonctions $\sum f_n$ converge simplement sur $[0,+\infty[$

$$2. \ \forall x \geq 0, \ \forall n \in \mathbb{N}^*, \ 0 \leq f_n(x) = \frac{1}{\sqrt{n}} - \frac{\sqrt{n}}{x+n}, \text{ d'où } |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0,+\infty[} |f_n(x)| \leq \frac{1}{\sqrt{n}}, \text{ donc } \sup_{x \in [0$$

De plus,
$$\lim_{x \to +\infty} f_n(x) = \frac{1}{\sqrt{n}}$$
, donc $\sup_{x \in [0, +\infty[} |f_n(x)| = \frac{1}{\sqrt{n}}$.

Or la série $\sum \frac{1}{\sqrt{n}}$ diverge. Donc la convergence de la série de fonctions $\sum f_n$ n'est pas normale sur $[0, +\infty[$.

3. On sait que chaque fonction f_n est de classe C^1 sur $[0, +\infty[$ et que la série de fonctions $\sum f_k$ converge simplement sur $[0, +\infty[$.

On montre que la série de fonctions $\sum f'_n$ converge uniformément sur $[0, +\infty[: \forall x \geq 0, \ f'_n(x) = \frac{\sqrt{n}}{(x+n)^2} \leq \frac{1}{n^{3/2}}, \ d'où \ la série de fonctions <math>\sum f'_n$ converge normalement sur $[0, +\infty[$.

Donc la fonction S est de classe C^1 sur $[0, +\infty[$ et, pour tout $x \in [0, +\infty[$, $S'(x) = \sum_{n=0}^{\infty} f'_n(x)$.

- 4. Pour tout $x \ge 0$, $S'(x) = \sum_{n=0}^{\infty} \frac{\sqrt{n}}{(x+n)^2} \ge 0$, donc la fonction S est croissante sur $[0, +\infty[$.
- 5. Soient un entier $n \ge 1$ et un réel $a \ge n$: $S(a) = \sum_{k=0}^{\infty} \frac{a}{\sqrt{k}(a+k)} \ge \sum_{k=0}^{n} \frac{a}{\sqrt{k}(a+k)}$.

Or
$$\frac{a}{a+k} \ge \frac{1}{2}$$
 pour tout $k \le n \le a$, d'où $S(a) \ge \sum_{k=1}^{n} \frac{1}{2\sqrt{k}}$.

6. La série $\sum \frac{1}{\sqrt{k}}$ diverge, d'où : $\forall M \in \mathbb{R}, \ \exists n \in \mathbb{N}, \ \sum_{k=1}^{n} \frac{1}{2\sqrt{k}} \geq M$. Alors $\forall a \geq n, \ S(a) \geq M$. Donc $\lim_{x \to +\infty} S(x) = +\infty$.

 $\text{Deuxième m\'ethode}: \lfloor x \rfloor \leq x, \text{ d'où } S(x) \geq \sum_{k=1}^{\lfloor x \rfloor} \frac{1}{2\sqrt{k}}. \text{ Or la s\'erie } \sum \frac{1}{\sqrt{k}} \text{ diverge, d'où } \sum_{k=1}^{\lfloor x \rfloor} \frac{1}{2\sqrt{k}} \underset{x \to +\infty}{\longrightarrow} +\infty. \text{ Donc, par comparaison, } S(x) \underset{x \to +\infty}{\longrightarrow} +\infty.$

Troisème Méthode : d'une part, la fonction S est croissante d'après la question 4. D'après le théorème de la limite monotone, la limite de S(x) quand le réel x tend vers $+\infty$ existe donc.

D'autre part, $S(n) \ge \sum_{k=1}^n \frac{1}{2\sqrt{k}}$ et la série $\sum \frac{1}{\sqrt{k}}$ diverge, d'ou $S(n) \xrightarrow[n \to \infty]{} +\infty$. Par unicité de la limite, $S(x) \xrightarrow[x \to +\infty]{} +\infty$.

7. Soient, pour tous x > 0 et $n \in \mathbb{N}^*$, $g_n(x) = \frac{f_n(x)}{x}$ et $T(x) = \frac{S(x)}{x} = \sum_{k=1}^{\infty} g_k(x)$. On veut montrer que : $T(x) \underset{x \to +\infty}{\longrightarrow} 0$.

La série de fonctions $\sum g_n$ converge normalement sur $]0,+\infty[$ car : $\forall n \in \mathbb{N}^*, \ \forall x \geq 0, \ 0 \leq g_n(x) = \frac{1}{\sqrt{n}(x+n)} \leq \frac{1}{n^{3/2}}$ et la série numérique $\sum \frac{1}{n^{3/2}}$ converge.

D'une part $\lim_{x\to +\infty}g_n(x)=0$; d'autre part la série de fonctions $\sum g_n$ converge (normalement, donc) uniformément sur $[0,+\infty[$. On peut donc intervertir somme et limite : $\lim_{x\to +\infty}T(x)=\sum_{x\to +\infty}^{\infty}\left(\lim_{x\to +\infty}g_n(x)\right)=0$.

8. On montre que la convergence n'est pas uniforme sur $[0, +\infty[$ par l'absurde, en utilisant la question 6 et le théorème de la double limite. Pour chaque $n \in \mathbb{N}^*$, $f_n(x) \underset{x \to +\infty}{\longrightarrow} \frac{1}{\sqrt{n}}$. Supposons que la série de fonctions $\sum f_n$ converge uniformément sur $[0, +\infty[$. Alors la série numérique $\sum_{x \to +\infty} f_n(x)$ converge. C'est absurde car $\sum \frac{1}{\sqrt{n}}$ diverge.

Exercice 4 (tiré de CCP Maths 1 MP 2015).

Soit, pour chaque $n \in \mathbb{N}^*$ et pour tout $x \in]0, +\infty[$, $f_n(x) = e^{-nx} - 2e^{-2nx}$.

- 1. Soit $n \in \mathbb{N}^*$: montrer que la fonction f_n est intégrable sur $]0, +\infty[$ et calculer l'intégrale $\int_0^{+\infty} f_n(x) dx$.
- 2. Montrer que la série de fonctions $\sum f_n$ converge simplement sur $]0, +\infty[$.

Calculer, pour chaque réel x strictement positif, $S(x) = \sum_{n=1}^{\infty} f_n(x)$.

Montrer que l'intégrale impropre $\int_0^{+\infty} S(x) dx$ est convergente et la calculer.

- 3. En déduire, sans aucun calcul, la nature de la série $\sum \int_0^{+\infty} |f_n(x)| dx$.
- 1. Soit $n \in \mathbb{N}^*$: pour tout x > 0, $|f_n(x)| \le e^{-nx} + 2e^{-2nx}$ et les intégrales $\int_0^{+\infty} e^{-nx} dx$ et $\int_0^{+\infty} e^{-2nx} dx$ convergent, donc $\int_0^{+\infty} |f_n(x)| dx$ converge. Et $\int_0^{+\infty} f_n(x) dx = \int_0^{+\infty} e^{-nx} dx 2 \int_0^{+\infty} e^{-2nx} dx = 0$.
- 2. Soit x > 0: les séries $\sum e^{-nx}$ et $\sum e^{-2nx}$ sont des séries géométriques de raisons strictement inférieures à 1 (car x > 0), donc la série $\sum f_n(x)$ est convergente car c'est une combinaison linéaire de deux séries convergentes. Calculons la somme partielle :

$$\sum_{n=1}^{N} e^{-nx} = e^{-x} \cdot \frac{1 - e^{-Nx}}{1 - e^{-x}} \xrightarrow[N \to \infty]{} e^{-x} \cdot \frac{1}{1 - e^{-x}} \quad \text{et} \quad \sum_{n=1}^{N} e^{-2nx} = e^{-2x} \cdot \frac{1 - e^{-2Nx}}{1 - e^{-2x}} \xrightarrow[N \to \infty]{} e^{-2x} \cdot \frac{1}{1 - e^{-2x}}.$$

Donc la série de fonctions $\sum f_n$ converge simplement sur $]0, +\infty[$ vers la fonction

$$S\,:\,x\mapsto \mathrm{e}^{-x}\cdot\frac{1}{1-\mathrm{e}^{-x}}-2\mathrm{e}^{-2x}\cdot\frac{1}{1-\mathrm{e}^{-2x}}=\frac{\mathrm{e}^{-x}\cdot(1+\mathrm{e}^{-x})-2\mathrm{e}^{-2x}}{1-\mathrm{e}^{-2x}}=\frac{\mathrm{e}^{-x}}{1+\mathrm{e}^{-x}}.$$

Soit a > 0. Pour calculer $\int_0^a S(x) dx$, on fait le changement de variable $u = e^{-x}$. La fonction $x \mapsto e^{-x}$ est de classe C^1 , d'où :

$$\int_0^a S(x) \, dx = -\int_1^{e^{-a}} \frac{1}{1+u} \, du = -\left[\ln|1+u|\right]_1^{e^{-a}} \underset{a \to +\infty}{\longrightarrow} \ln 2.$$

D'où l'intégrale $\int_0^{+\infty} S(x)\,dx$ converge et vaut ln 2.

- 3. D'après le théorème d'intégration terme et terme sur un intervalle quelconque, si :
 - (i) la série $\sum f_n(x)$ converge vers S(x) pour tout $x \in]0, +\infty[$;
 - (ii) la série $\sum \int_0^{+\infty} |f_n(x)| dx$ converge;

alors
$$S$$
 est intégrable et $\sum_{n=1}^{\infty} \int_{0}^{+\infty} f_n(x) dx = \int_{0}^{+\infty} S(x) dx$.

$$\operatorname{Or} \sum_{n=1}^{\infty} \int_{0}^{+\infty} f_{n}(x) \, dx = \sum_{n=1}^{\infty} 0 = 0 \text{ d'après la question 1 et } \int_{0}^{+\infty} S(x) \, dx = \ln 2 \text{ d'après la question 2, d'où (par l'absurde) : (i)}$$

ou (ii) est faux. Or (i) est vrai d'après la question 2. D'où (ii) est faux.

Donc la série
$$\sum \int_0^{+\infty} |f_n(x)| dx$$
 diverge.

Exercice 5. Soient une suite numérique $(c_n)_{n\in\mathbb{N}}$ telle que la série $\sum c_n$ converge absolument et, pour chaque $n\in\mathbb{N}$, la fonction

$$f_n: \mathbb{R} \to \mathbb{R}, \ t \mapsto c_n \frac{t^n}{n!}.$$

- 1. Soit un réel a > 0. Montrer que la série numérique $\sum \frac{a^n}{n!}$ est convergente et en déduire que la série de fonctions $\sum f_n$ converge normalement sur [-a, +a].
- 2. Montrer que la fonction $f: t \mapsto \sum_{n=0}^{\infty} f_n(t)$ est définie et continue sur \mathbb{R} .
- 3. Montrer que, pour chaque $n \in \mathbb{N}$, l'intégrale généralisée $\int_0^{+\infty} \frac{t^n}{n!} e^{-t} dt$ est convergente et la calculer.
- 4. Montrer que l'intégrale $\int_0^{+\infty} f(t) e^{-t} dt$ est convergente et qu'elle est égale à $\sum_{n=0}^{\infty} c_n >$ théorème 16.
- 1. La suite $u_n = \frac{a^n}{n!}$ est strictement positive et $\frac{u_{n+1}}{u_n} = \frac{a}{n+1} \underset{n \to \infty}{\longrightarrow} 0$, donc la série $\sum u_n$ converge d'après la règle de D'Alembert.

La série $\sum c_n$ étant convergente, la suite c_n tend vers 0 et est donc bornée : $\exists M \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ |c_n| \leq M$. Pour tout $(n,t) \in \mathbb{N} \times [-a,+a], \ |f_n(t)| = |c_n| \frac{|t|^n}{n!} \leq M \frac{a^n}{n!}$. Or la série numérique $\sum \frac{a^n}{n!}$ est convergente d'après la question précédente. Donc la série de fonctions $\sum f_n$ converge normalement sur [-a,+a].

- 2. Soit a > 0. La série de fonctions $\sum f_n$ converge normalement sur [-a, +a], or chaque fonction f_n est continue sur [-a, +a], donc la fonction f est définie et continue sur [-a, +a]. Ceci est vrai pour tout a > 0, donc aussi sur \mathbb{R} .
- 3. Pour tout $n \in \mathbb{N}$, $t^n e^{-t} = t^n e^{-t/2} e^{-t/2} = \sum_{t \to +\infty}^{0} (e^{-t/2})$. Or $e^{-t/2}$ ne change pas de signe et $\int_0^{+\infty} e^{-t/2} dt$ converge, donc $\int_0^{+\infty} \frac{t^n}{n!} e^{-t} dt$ est convergente et on montre par récurrence que $\int_0^{+\infty} \frac{t^n}{n!} e^{-t} dt = 1$.
- 4. Soit, pour chaque $n \in \mathbb{N}$, $g_n: t \mapsto f_n(t)\mathrm{e}^{-t}$. On utilise le théorème d'intégration terme à terme sur un intervalle quelconque :
 - chaque fonction g_n est intégrable d'après la question précédente;
 - la série de fonctions $\sum g_n$ converge simplement sur \mathbb{R} vers la fonction $g:t\mapsto f(t)\mathrm{e}^{-t}\ cpm$ d'après la question 2;
 - la série numérique $\sum_{n=0}^{\infty} \int_{0}^{+\infty} |g_n|$ est convergente car, pour tout $n \in \mathbb{N}$, $\int_{0}^{+\infty} |g_n| = |c_n|$ (d'après la question précédente) et la série numérique $\sum_{n=0}^{\infty} c_n$ converge absolument par hypothèse.

D'où la fonction g est intégrable et $\int_0^{+\infty} g(t) dt = \sum_{n=0}^{\infty} \int_0^{+\infty} g_n(t) dt$. Donc l'intégrale $\int_0^{+\infty} f(t) e^{-t} dt$ est convergente et égale à $\sum_{n=0}^{\infty} c_n$.

Exercice 6 (LA FONCTION ZÊTA DE RIEMANN). Soit, pour chaque $n \in \mathbb{N}^*$, la fonction

$$f_n: \mathbb{R} \to \mathbb{R}, \ x \mapsto \frac{1}{n^x}.$$

- 1. Montrer que la série de fonctions $\sum f_n$ converge simplement sur l'intervalle $I =]1, +\infty[$.
- 2. Soit a > 1. Montrer que la série de fonctions $\sum f_n$ converge normalement sur $[a, +\infty[$.
- 3. Calculer sup $|f_n(x)|$ pour chaque $n \in \mathbb{N}^*$. Montrer que la convergence de la série de fonctions $\sum f_n$ n'est pas normale sur l'intervalle I.
- 4. En utilisant le théorème de la double limite, montrer que la convergence de la série de fonctions $\sum f_n$ n'est pas uniforme sur l'intervalle I.
- 5. Montrer que la fonction $\zeta: x \mapsto \sum_{n=1}^{\infty} \frac{1}{n^x}$ est définie et continue sur I.
- 6. Montrer que la fonction ζ est de classe C^1 sur I et que, pour tout $x \in I$, $\zeta'(x) = -\sum_{n=0}^{\infty} \frac{\ln n}{n^x}$.
- 7. En utilisant le théorème de la double limite, montrer que $\lim_{x \to +\infty} \zeta(x) = 1$ \triangleright **exo 7 du TD 1**.
- 1. Soit x > 1. D'après le critère de Riemann, la série numérique $\sum \frac{1}{n^x}$ converge. Donc la série de fonctions $\sum f_n$ converge
- 2. Pour tout $x \ge a$, $\frac{1}{n^x} \le \frac{1}{n^a}$. Or la série numérique $\sum \frac{1}{n^a}$ converge. Donc la série de fonctions $\sum f_n$ converge normalement sur $[a, +\infty[$.
- 3. Par l'absurde : supposons qu'il existe une suite u_n telle que $\begin{cases} \forall x \in I, \ |f_n(x)| \leq u_n \\ \sum u_n \text{ converge} \end{cases}$. Or $\sup_{x \in I} |f_n(x)| = \frac{1}{n}$, d'où $u_n \geq \frac{1}{n}$. Or la série $\sum \frac{1}{n}$ diverge. C'est absurde. Donc la convergence n'est pas normale sur I.

 4. Par l'absurde. Pour chaque $n \in \mathbb{N}^*$, $f_n(x) \underset{x \to 1^+}{\longrightarrow} \frac{1}{n}$, d'où : si la série de fonctions $\sum f_n$ converge uniformément sur I, alors
- (théorème de la double limite) la série numérique $\sum \frac{1}{n}$ converge. C'est absurde. Donc la convergence n'est pas uniforme
- 5. La série de fonctions $\sum f_n$ converge simplement sur I, donc sa somme ζ est définie sur $I=]1,+\infty[$. Soit a > 1. La série de fonctions $\sum f_n$ converge (normalement d'après la question 2, donc) uniformément sur $[a, +\infty[$ et chaque fonction f_n est continue sur $[a, +\infty[$, d'où la fonction $\zeta = \sum_{n=1}^{\infty} f_n$ est continue sur $[a, +\infty[$.

Ceci est vrai pour tout a > 1, donc la fonction ζ est continue sur $]1, +\infty[$.

- 6. Soit a > 1. On va appliquer le théorème de dérivation terme à terme sur l'intervalle $[a, +\infty[$:
 - pour chaque $n \in \mathbb{N}^*$, la fonction f_n est de classe \mathcal{C}^1 sur $[a, +\infty[$ et $\forall x \in [a, +\infty[$, $f'_n(x) = \frac{-\ln n}{n^x}$;
 - la série de fonctions $\sum f_n$ converge simplement sur $[a, +\infty[$ d'après la question 1;
 - la série de fonctions $\sum f'_n$ converge normalement, donc uniformément sur $[a, +\infty[$. En effet, $\forall n \in \mathbb{N}^*$, $\forall x \in [a, +\infty[$, $|f'_n(x)| \leq \frac{\ln n}{n^a}$ et la série $\sum \frac{\ln n}{n^a}$ converge car

$$\frac{\ln n}{n^a} = \frac{\ln n}{n^{\varepsilon}} \cdot \frac{1}{n^{a-\varepsilon}} = \underset{n \to \infty}{o} \left(\frac{1}{n^{a-\varepsilon}} \right), \text{ en choisissant } \begin{cases} \varepsilon > 0 \\ a - \varepsilon > 1 \end{cases}$$

Donc la fonction ζ est de classe \mathcal{C}^1 sur $[a, +\infty[$ et $\forall x \in [a, +\infty[$, $\zeta'(x) = \sum_{n=1}^{\infty} f'_n(x)$. Ceci est vrai pour tout a > 1, donc : la fonction ζ est de classe \mathcal{C}^1 sur I et $\forall x \in I$, $\zeta'(x) = -\sum_{n=2}^{\infty} \frac{\ln n}{n^x}$.

7. Soit a > 1. On va appliquer le théorème de la double limite sur l'intervalle $[a, +\infty[$: la série de fonctions $\sum f_n$ converge uniformément sur $[a, +\infty[$ et, pour chaque $n \in \mathbb{N}^*$, $f_n(x) \underset{x \to +\infty}{\longrightarrow} \begin{cases} 1 \text{ si } n = 1 \\ 0 \text{ si } n > 1 \end{cases}$

Donc
$$\lim_{x \to +\infty} \zeta(x) = \sum_{n=1}^{\infty} \lim_{x \to +\infty} f_n(x) = 1.$$

Exercice 7 (théorème de la convergence dominée). Soit f une fonction continue par morceaux et intégrable sur l'intervalle]0,1[. Pour chaque $n \in \mathbb{N}$, pour tout $t \in]0,1[$, on note

$$f_n(t) = (-1)^n t^n f(t)$$
 et $S_n(t) = \sum_{k=0}^n f_k(t)$.

- 1. Montrer que : $\forall n \in \mathbb{N}, \ \forall t \in]0,1[, |S_n(t)| \leq |f(t)|.$
- 2. En déduire que $\int_{0}^{1} \frac{f(t)}{1+t} dt = \sum_{n=0}^{\infty} \int_{0}^{1} f_{n}(t) dt$.
- 1. Soient $n \in \mathbb{N}$, pour tout $t \in]0,1[:S_n(t)=\sum_{k=0}^n (-1)^k t^k f(t)=f(t)\sum_{k=0}^n (-1)^k t^k=f(t)\frac{1-(-t)^{n+1}}{1-(-t)}$. Or, d'après l'inégalité triangulaire, $|1-(-t)^{n+1}| \le 1+t^{n+1} \le 1+t$, donc $|S_n(t)| \le |f(t)|$.
- 2. On applique le théorème de la convergence dominée à la suite de fonctions (S_n) qui est dominée grâce à la question

 - (S_n) converge simplement sur]0,1[vers la fonction $t\mapsto \frac{f(t)}{1+t}$ qui est cpm car f l'est par hypothèse; pour tout $(n,t)\in \mathbb{N}\times]0,1[,|S_n(t)|\leq |f(t)|$ indépendant de n et $\int_0^1 |f|$ est convergente car f est intégrable par

Donc on peut intervertir limite et intégrale : $\int_0^1 \lim_{n \to \infty} S_n(t) dt = \int_0^1 \frac{f(t)}{1+t} dt$ est égal à

$$\lim_{n \to \infty} \int_0^1 S_n(t) \, dt = \lim_{n \to \infty} \int_0^1 \sum_{k=0}^n f_k(t) \, dt = \lim_{n \to \infty} \sum_{k=0}^n \int_0^1 f_k(t) \, dt = \sum_{k=0}^\infty \int_0^1 f_k(t) \, dt.$$