CORRIGÉ DU T.D. Nº 6

Dénombrement & probabilités

20 novembre 2025

Exercice 1 (Dénombrement).

Démontrer les formules suivantes :

1.

$$\sum_{n=0}^{n} \binom{n}{p} = 2^n$$

(de deux manières : formule du binôme et dénombrement)

2. La petite formule

$$p\binom{n}{p} = n\binom{n-1}{p-1}$$

3. Calculer, de deux manières (en utilisant la « petite formule » ou en dérivant), $\sum_{k=1}^{n} k \binom{n}{k}$. En déduire

$$\sum_{X \in \mathcal{P}([\![1,n]\!])} \operatorname{Card}(X)$$

4. La formule de Vandermonde

$$\sum_{p=0}^{n} \binom{a}{p} \binom{b}{n-p} = \binom{a+b}{n} \text{ et, en particulier, } \sum_{p=0}^{n} \binom{n}{p}^2 = \binom{2n}{n}$$

(de deux manières : développement de $(1+X)^{a+b}$ et dénombrement)

5.

$$\sum_{k=p}^{n} \binom{k}{p} = \binom{n+1}{p+1}$$

(de deux manières : télescope et dénombrement).

- 1. Il y a 2^n parties de [1, n]. En construire une, c'est :
 - choisir son cardinal p;
 - choisir ses p éléments parmi n.

Donc
$$\sum_{p=0}^{n} \binom{n}{p} = 2^n$$
.

Autre méthode :
$$2^n = (1 + 1^n = \sum_{p=0}^{n} {n \choose p} 1^p 1^{n-p}$$
.

Autre méthode :
$$2^n = (1+1^n = \sum_{p=0}^n \binom{n}{p} 1^p 1^{n-p}$$
.
2. $p\binom{n}{p} = p \frac{n!}{p!(n-p)!} = \frac{n!}{(p-1)!(n-p)!} = n \frac{(n-1)!}{(p-1)!((n-1)-(p-1))!} = n \binom{n-1}{p-1}$.

3. En utilisant la « petite formule » $k \binom{n}{k} = n \binom{n-1}{k-1}$:

$$\begin{array}{rcl} \sum_{k=0}^n k \binom{n}{k} & = & n \sum_{k=1}^n \binom{n-1}{k-1} \\ & = & n \sum_{k=0}^{n-1} \binom{n-1}{k} \\ & = & n 2^{n-1}. \end{array}$$

Ou en dérivant, par rapport à x, la formule $(1+x)^n=\sum_{k=0}^n \binom{n}{k} x^k$ pour tout $x\in\mathbb{R}$:

 $n(1+x)^{n-1} = \sum_{k=0}^n \binom{n}{k} k x^{k-1} \text{ pour tout } x \in \mathbb{R}. \text{ En particulier, si } x=1, \text{ alors } : n2^{n-1} = \sum_{k=1}^n \binom{n}{k} k x^{k-1}$

$$\sum_{X \in \mathcal{P}(E)} \operatorname{Card} X = \sum_{k=0}^{n} \sum_{X \in \mathcal{P}(E), \operatorname{Card} X = k} \operatorname{Card} X$$

$$= \sum_{k=0}^{n} \sum_{X \in \mathcal{P}(E), \operatorname{Card} X = k} k$$

$$= \sum_{k=0}^{n} k \binom{n}{k}$$

$$= n2^{n-1}$$

- 4. Choisir n éléments parmi a + b, c'est :
 - en choisir k parmi a;
 - puis choisir les n-k autres parmi b.

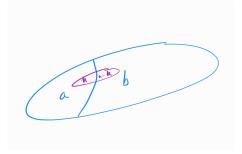


FIGURE 1 – LA FORMULE DE VANDERMONDE

5. Par un télescope en utilisant le triangle de Pascal.

Ou par le dénombrement. Choisir p+1 éléments parmi n+1, c'est :

- choisir le plus grand d'entre eux, disons k+1 (où $k\in \llbracket p,n\rrbracket$);
- puis choisir les p autres éléments parmi les k plus petits (il y a $\binom{k}{p}$ manières).

Donc
$$\sum_{k=p}^{n} {k \choose p} = {n+1 \choose p+1}$$

Exercice 2 (La formule d'inversion de Pascal).

1. Montrer que la matrice

$$T = \begin{pmatrix} \binom{0}{0} & 0 & \cdots & \cdots & 0 \\ \binom{1}{0} & \binom{1}{1} & 0 & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \binom{n-1}{0} & & & \binom{n-1}{n-1} & 0 \\ \binom{n}{0} & \cdots & \cdots & \cdots & \binom{n}{n} \end{pmatrix} \in \mathcal{M}_{n+1,n+1}$$

du triangle de Pascal définie par $T_{ij} = {i \choose j}$ pour tout $(i,j) \in [0,n]^2$ est inversible et déterminer son inverse.

2. Soit $n \in \mathbb{N}$. Pour tout entier $p \ge n$, on note $S_{p,n}$ le nombre de surjections de [1,p] vers [1,n], en posant $S_{p,0} = 0$. Montrer que $n^p = \sum_{k=0}^n \binom{n}{k} S_{p,k}$ et en déduire que $S_{p,n} = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} k^p$.

3. Un dérangement est, par définition, une permutation sans point fixe. On pose $D_0=1$ et, pour tout $n\in\mathbb{N}^*,\,D_n$ le nombre de dérangements de l'ensemble $[\![1,n]\!]$. Montrer que $\forall n\in\mathbb{N},\,n!=\sum_{k=0}^n\binom{n}{k}D_k$. En déduire que $\forall n\in\mathbb{N},\,D_n=n!\sum_{k=0}^n\frac{(-1)^k}{k!}$. Étudier $\lim_{n\to\infty}\frac{D_n}{n!}$.

1. Première rédac :

La matrice T est triangulaire et ses éléments diagonaux valent $\binom{p}{p}=1$. Son déterminant vaut donc 1. Il est non nul, la matrice T est donc inversible. D'après les n+1 formules du binôme de Newton, $\forall i \in \llbracket 0, n \rrbracket$, $\forall x \in \mathbb{R}$,

$$\sum_{j=0}^{n} \binom{i}{j} x^{j} = (1+x)^{i}, \quad \text{d'où} \underbrace{ \begin{pmatrix} \binom{0}{0} & 0 & \cdots & \cdots & 0 \\ \binom{1}{0} & \binom{1}{1} & 0 & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \binom{n-1}{0} & & & \binom{n-1}{n-1} & 0 \\ \binom{n}{0} & \cdots & \cdots & \binom{n}{n} \end{pmatrix} \underbrace{ \begin{pmatrix} 1 \\ x \\ x^{2} \\ \vdots \\ \vdots \\ x^{n-1} \\ x^{n} \end{pmatrix}}_{V(x)} = \underbrace{ \begin{pmatrix} 1 \\ 1+x \\ (1+x)^{2} \\ \vdots \\ \vdots \\ (1+x)^{n-1} \\ (1+x)^{n} \end{pmatrix}}_{V(x+1)} \quad \text{et}$$

$$\sum_{j=0}^{n} {i \choose j} (1+x)^j (-1)^{i-j} = (1+x-1)^i = x^i, \quad \text{d'où}$$

$$\underbrace{\begin{pmatrix} (-1)^0\binom{0}{0} & 0 & \cdots & \cdots & 0 \\ (-1)^1\binom{1}{0} & (-1)^0\binom{1}{1} & 0 & & & \vdots \\ \vdots & & \ddots & \ddots & & \vdots \\ \vdots & & & \ddots & \ddots & & \vdots \\ (-1)^{n-1}\binom{n-1}{0} & & & & (-1)^0\binom{n-1}{n-1} & 0 \\ (-1)^n\binom{n}{0} & \cdots & \cdots & \cdots & \cdots & (-1)^0\binom{n}{n} \end{pmatrix}}_{U}\underbrace{\begin{pmatrix} 1 \\ 1+x \\ (1+x)^2 \\ \vdots \\ \vdots \\ (1+x)^{n-1} \\ (1+x)^n \end{pmatrix}}_{V(x+1)} = \underbrace{\begin{pmatrix} 1 \\ x \\ x^2 \\ \vdots \\ \vdots \\ x^{n-1} \\ x^n \end{pmatrix}}_{V(x)}.$$

On tire de la première équation que $V(x)=T^{-1}\cdot V(x+1)$. Et de la seconde équation que $U\cdot V(x+1)=V(x)$. D'où $U\cdot V(x+1)=T^{-1}\cdot V(x+1)$ pour tout $x\in\mathbb{R}$. En particulier, en choisissant n+1 réels a_0,a_1,\cdots,a_n distincts deux à deux :

$$\forall i \in [0, n], \quad U \cdot V(a_i) = T^{-1} \cdot V(a_i).$$

Or les n+1 vecteurs colonnes $V(a_i)$ forment une base de $\mathcal{M}_{n+1,1}$ (car leur déterminant est un déterminant de Vandermonde

non nul), donc
$$U = T^{-1}$$

SECONDE RÉDAC:

$$(X+1)^n \quad (X+1)^{n-1} \quad \cdots \quad \cdots \quad (X+1) \quad 1$$

$$X^n \quad \begin{pmatrix} \binom{0}{0} & 0 & \cdots & \cdots & 0 \\ \binom{1}{0} & \binom{1}{1} & 0 & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ X \quad \begin{pmatrix} \binom{n-1}{0} & & & \binom{n-1}{n-1} & 0 \\ 0 & & & & \ddots & \binom{n}{n} \end{pmatrix} \text{ est la matrice de passage de la vieille base}$$

$$1 \quad \begin{pmatrix} \binom{n}{0} & & & & \binom{n-1}{n-1} & 0 \\ \binom{n}{0} & & & & \cdots & \binom{n}{n} \end{pmatrix}$$

 $(X^n, X^{n-1}, \dots, X, 1)$ de l'ev $\mathbb{R}_n[X]$ vers la nouvelle base $((X+1)^n, (X+1)^{n-1}, \dots, X+1, 1)$. Elle est donc inversible et son inverse est la matrice de passage de la nouvelle base vers la vieille base :

$$(X+1)^n \begin{pmatrix} X^n & X^{n-1} & \cdots & X & 1 \\ (-1)^0 {0 \choose 0} & 0 & \cdots & \cdots & 0 \\ (X+1)^{n-1} & (-1)^1 {1 \choose 0} & (-1)^0 {1 \choose 1} & 0 & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & \vdots \\ X+1 & (-1)^{n-1} {n-1 \choose 0} & & & (-1)^0 {n-1 \choose n-1} & 0 \\ 1 & & & & \cdots & \cdots & (-1)^0 {n \choose n} \end{pmatrix}.$$

- 2. Il y a n^p applications f de $[\![1,p]\!]$ vers $[\![1,n]\!]$. En construire une, c'est :
 - choisir le cardinal k de Im(f), *i.e.* le nombre k d'éléments atteints dans [1, n];
 - choisir les k éléments atteints dans [1, n] (il y a $\binom{n}{k}$ manières);
 - construire une surjection de [1,p] vers les k éléments choisis (il y a $S_{p,k}$ manières).

Donc
$$n^p = \sum_{k=0}^n \binom{n}{k} S_{p,k}$$
. Donc, d'après la formule d'inversion de Pascal, $S_{p,n} = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} k^p$.

- 3. Il y a n! permutations de [1, n]. En construire une, c'est :
 - choisir le nombre k d'éléments dérangés [1, n];
 - choisir les k éléments dérangés dans [1, n] (il y a $\binom{n}{k}$ manières);
 - construire une dérangement de [1, k] (il y a D_k manières).

Donc
$$n! = \sum_{k=0}^{n} {n \choose k} D_k$$
. Donc, d'après la formule d'inversion de Pascal, $D_n = \sum_{k=0}^{n} (-1)^{n-k} {n \choose k} k! = \sum_{k=0}^{n} (-1)^{n-k} \frac{n!}{k!(n-k)!} k! = n! \sum_{k=0}^{n} \frac{(-1)^{n-k}}{(n-k)!} = n! \sum_{k=0}^{n} \frac{(-1)^{p}}{p!}$ grâce au changement d'indice $p = n - k$.

Donc $\frac{D_n}{n!} = \sum_{p=0}^n \frac{(-1)^p}{p!} \xrightarrow[p \to \infty]{} \frac{1}{e}$. Il y a donc environ un tiers des permutations qui sont des dérangements.

Exercice 3 (Indépendance). Soient A et B deux événements et les probabilités

$$x = P(A \cap B), \quad y = P(A \cap \overline{B}), \quad z = P(\overline{A} \cap B), \quad t = P(\overline{A} \cap \overline{B}).$$

- 1. Calculer x + y + z + t.
- 2. Calculer $P(A \cap B) P(A) \cdot P(B)$ en fonction de x, y, z et t.

En déduire que : A et B sont indépendants si, et seulement si,

$$P(A \cap B) \times P(\bar{A} \cap \bar{B}) = P(A \cap \bar{B}) \times P(\bar{A} \cap B).$$

3. Montrer que : $\forall u \in \mathbb{R}, \quad u \cdot (1-u) \leq \frac{1}{4}$.

En déduire que : $|P(A \cap B) - P(A) \cdot P(B)| \le \frac{1}{4}$.

- 1. $(A \cap B) \cup (A \cap \bar{B}) = A$ et cette union est disjointe, d'où : x + y = P(A). De même $z + t = P(\bar{A})$. Or $A \cup \bar{A} = \Omega$ et cette union est disjointe, d'où $P(A) + P(\bar{A}) = P(\Omega)$, donc x + y + z + t = 1.
- 2. Les événements A et B sont indépendants si, et seulement si, $P(A \cap B) = P(A) \cdot P(B)$.

Or
$$P(A \cap B) - P(A) \cdot P(B) = x - (x+y)(x+z) = x(x+y+z+t) - (x+y)(x+z) = xt - yz$$
.

Donc A et B sont indépendants si, et seulement si, $P(A \cap B) \times P(\bar{A} \cap \bar{B}) = P(A \cap \bar{B}) \times P(\bar{A} \cap B)$.

3. Pour tout u réel, $\frac{1}{4} - u \cdot (1 - u) = u^2 - u + \frac{1}{4} = \left(u - \frac{1}{2}\right)^2 \ge 0$, donc : $\forall u \in \mathbb{R}$, $u \cdot (1 - u) \le \frac{1}{4}$.

On veut montrer que : $-\frac{1}{4} \le P(A \cap B) - P(A) \cdot P(B) \le +\frac{1}{4}$.

D'une part,

$$P(A \cap B) - P(A) \cdot P(B) = x - (x + y)(x + z) \quad \text{d'après } 1$$

$$= x - x^2 - (xz + yx + yz)$$

$$\leq x - x^2$$

$$\leq \frac{1}{4} \quad \text{d'après } 3.$$

D'autre part,

$$\begin{array}{lcl} P(A)\cdot P(B)-P(A\cap B) & = & yz-xt & \text{d'après 1} \\ & = & y(x+y+z+t)-(y+x)(y+t) \\ & \leq & y-y^2 \\ & \leq & \frac{1}{4} & \text{d'après 3}. \end{array}$$

Exercice 4 (Équiprobabilité). Soit $n \ge 3$. Les boules d'une urne sont numérotées de 1 à n. On tire toutes les boules au hasard, l'une après l'autre, sans les remettre dans l'urne.

- 1. Quel est l'univers?
- 2. Quelle est la probabilité que les boules 1, 2 et 3 sortent dans cet ordre et consécutivement?
- 3. Quelle est la probabilité que les boules 1, 2 et 3 sortent dans cet ordre?
- 1. Le tirage se fait sans remise, un résultat est donc une liste sans répétition (u_1, \dots, u_n) , où u_i est le numéro de la i-ème boule tirée. Mieux : un résultat est une permutation de $[\![1,n]\!]$. L'univers Ω est donc le groupe S_n des permutations de $[\![1,n]\!]$. Dans cet univers, il y a équiprobabilité, donc la probabilité d'un événement A est

$$P(A) = \frac{\text{nbre de résultats favorables à } A}{\text{nombre de résultats possibles}} = \frac{\operatorname{Card}(A)}{\operatorname{Card}(\Omega)}.$$

De plus $Card(\Omega) = Card(S_n) = n!$.

- 2. Réaliser l'événement A : « les boules 1, 2 et 3 sortent dans cet ordre et consécutivement », c'est :
 - choisir à quel moment on tire le n° 1 (il y a n-2 manières car il faut laisser de la place pour tirer ensuite le n° 2 et le n° 3);
 - tirer juste après le nº 2 puis le nº 3 (il y a une manière);
 - placer les n-3 autres boules aux n-3 autres places (il y a (n-3)! manières).

Donc Card(A) = $(n-2) \times 1 \times (n-3)! = (n-2)!$ et $P(A) = \frac{(n-2)!}{n!} = \frac{1}{n(n-1)}$. (Remarque : dans le cas où n=3, on trouve bien $\frac{1}{6}$.)

- 3. Réaliser l'événement B : « les boules 1, 2 et 3 sortent dans cet ordre », c'est :
 - choisir les moments où seront tirés les numéros 1, 2 et 3 (il y a $\binom{n}{3} = \frac{n!}{3!(n-3)!}$ manières);
 - y placer les numéros 1, 2 et 3 dans cet ordre (il y a une manière);
 - placer les n-3 autres boules aux n-3 autres places (il y a (n-3)! manières)

$$\text{Donc Card}(B) = \frac{n!(n-3)!}{3!(n-3)!} = \frac{n!}{6} \text{ et } P(B) = \frac{n!}{n!6} = \frac{1}{6}.$$

Exercice 5 (Formule des probabilités totales & suite arithmético-géométrique). On étudie le fonctionnement d'une machine à chaque instant $n \in \mathbb{N}$, sachant que :

- si elle marche à l'instant n, elle tombe en panne à l'instant n+1 avec une probabilité a;
- si elle est en panne à l'instant n, elle est encore en panne à l'instant n+1 avec une probabilité b.

On suppose que $|b-a| \neq 1$ et on note u_n la probabilité que la machine marche à l'instant n.

- 1. Déterminer une relation entre u_{n+1} et u_n pour chaque $n \in \mathbb{N}$.
- 2. Exprimer u_n en fonction de n, de u_0 , de b et de a.
- 3. Etudier la limite de la suite (u_n) .
- 1. Soit M_n l'événement « La machine marche à l'instant n ». Les événements M_n et $\overline{M_n}$ ont une union disjointe et certaine, d'où :

$$P(M_{n+1}) = P(M_n) \cdot P_{M_n}(M_{n+1}) + P(\overline{M_n}) \cdot P_{\overline{M_n}}(M_{n+1}).$$

Or
$$P(M_{n+1}) = u_{n+1}$$
, $P(M_n) = u_n$, $P(\overline{M_n}) = 1 - u_n$ et
$$\begin{cases} P_{M_n}(M_{n+1}) = 1 - P_{M_n}(\overline{M_{n+1}}) = 1 - a \\ P_{\overline{M_n}}(M_{n+1}) = 1 - P_{\overline{M_n}}(\overline{M_{n+1}}) = 1 - b \end{cases}$$
. D'où $u_{n+1} = u_n(1-a) + (1-u_n)(1-b)$. Donc $u_{n+1} = (b-a)u_n + (1-b)$. (*)

2. La relation de récurrence (*) est arithmético-géométrique, on la résout en cherchant un point fixe ℓ :

$$\ell = (b-a)\ell + (1-b) \iff \ell = \frac{1-b}{1-b+a}$$

car $a-b\neq -1$ par hypothèse. D'où :

$$(*) \iff u_{n+1} - \ell = (b-a)(u_n - \ell) \iff u_n - \ell = (b-a)^n(u_0 - \ell) \iff u_n = (b-a)^n(u_0 - \ell) + \ell.$$

3.
$$\begin{cases} 0 \le a \le 1 \\ 0 \le b \le 1 \end{cases}$$
, d'où $0 - 1 \le a - b \le 1 - 0$, d'où $|a - b| \le 1$. De plus $|b - a| \ne 1$ par hypothèse, donc $|b - a| < 1$ et $(b - a)^n \underset{n \to \infty}{\longrightarrow} 0$, donc $u_n \underset{n \to \infty}{\longrightarrow} \ell$.

Exercice 6 (Formule des probabilités totales & matrice stochastique). Un mobile se déplace sur un triangle ABC. À chaque instant $n \in \mathbb{N}$, la position du mobile est A (avec la probabilité a_n), B (avec la probabilité b_n), ou C (avec la probabilité c_n). Entre deux instants n et n+1, le mobile change de position et se dirige de manière équiprobable vers une des deux autres positions. On suppose que, à l'instant 0, le mobile est situé à un sommet.

Exprimer matriciellement $(a_{n+1}, b_{n+1}, c_{n+1})$ en fonction de (a_n, b_n, c_n) . Étudier les limites de a_n, b_n et c_n quand n tend vers l'infini. Dépendent-elles de la position initiale du mobile?

Pour chaque $n \in \mathbb{N}$, les trois événements A_n « le mobile est en A à l'instant n », B_n « le mobile est en B à l'instant n » et C_n « le mobile est en C à l'instant n » ont une union certaine et disjointe, d'où (formule des probabilités totales) : $P(A_{n+1}) = P(A_n) \cdot P(A_{n+1}|A_n) + P(B_n) \cdot P(A_{n+1}|B_n) + P(C_n) \cdot P(A_{n+1}|C_n)$ et, de même pour $P(B_{n+1})$ et $P(C_{n+1})$. D'où

$$\begin{pmatrix} a_{n+1} \\ b_{n+1} \\ c_{n+1} \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{pmatrix}}_{M} \underbrace{\begin{pmatrix} a_{n} \\ b_{n} \\ c_{n} \end{pmatrix}}_{Y}, \quad \text{donc, par récurrence,} \quad \begin{pmatrix} a_{n} \\ b_{n} \\ c_{n} \end{pmatrix} = M^{n} \begin{pmatrix} a_{0} \\ b_{0} \\ c_{0} \end{pmatrix}.$$

Pour calculer ${\cal M}^n,$ on essaie de diagonaliser la matrice ${\cal M}$:

$$M\varepsilon_1 = 1\varepsilon_1, \ M\varepsilon_2 = -\frac{1}{2}\varepsilon_2 \text{ et } M\varepsilon_3 = -\frac{1}{2}\varepsilon_3, \text{avec } \varepsilon_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \ \varepsilon_2 = \begin{pmatrix} 1\\-1\\0 \end{pmatrix} \text{ et } \varepsilon_3 = \begin{pmatrix} 0\\1\\-1 \end{pmatrix}.$$

Les trois vecteurs ε_1 , ε_2 et ε_3 sont propres et linéairement indépendants, donc la matrice M est diagonalisable :

$$P^{-1}MP = D$$
, avec $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1/2 & 0 \\ 0 & 0 & -1/2 \end{pmatrix}$ et $P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$.

D'où
$$X_n = M^n X_0 \iff X_n' = D^n X_0'$$
, en notant $X_n = P X_n'$ pour chaque $n \in \mathbb{N}$. Or $D^n X_0' = \begin{pmatrix} a_0' \\ b_0'/(-2)^n \\ c_0'/(-2)^n \end{pmatrix} \underset{n \to \infty}{\longrightarrow} \begin{pmatrix} a_0' \\ 0 \\ 0 \end{pmatrix}$.

Exercice 7 (Formule de Bayes). Une boîte contient des dés à 6 faces : une proportion $1-p \neq 0$ de dés honnêtes et une proportion $p \neq 0$ de dés malhonnêtes. Quand on lance un dé malhonnête, la probabilité d'obtenir un 6 est $\frac{1}{2}$.

- 1. On prend un dé au hasard dans la boîte et on le lance. Quelle est la probabilité d'obtenir un 6?
- 2. On prend un dé au hasard dans la boîte, on le lance et on obtient un 6. Quelle est la probabilité que le dé soit malhonnête?
- 3. On prend un dé au hasard dans la boîte, on le lance n fois et on obtient un 6 à chaque lancer. Quelle est la probabilité u_n que le dé soit malhonnête?
- 4. Etudier la limite de la suite (u_n) .

1. Soient les événements H: « le dé est honnête » et S: « on obtient un six ». Les événements H et \overline{H} ont une union disjointe et certaine, d'où (formule des probabilités totales) :

$$P(S) = P(H) \cdot P(S|H) + P(\overline{H}) \cdot P(S|\overline{H}) = (1-p) \times \frac{1}{6} + p \times \frac{1}{2} = \frac{1}{3}p + \frac{1}{6}.$$

- 2. D'après la formule de Bayes, $P(S) \cdot P(\bar{H}|S) = P(\bar{H}) \cdot P(S|\bar{H})$. D'où $P(\bar{H}|S) = \frac{P(\bar{H}) \cdot P(S|\bar{H})}{P(S)} = \frac{\frac{1}{2}p}{\frac{1}{2}p + \frac{1}{6}}$.
- 3. Soit l'événement S_n : « on obtient n six ».

$$u_n = P(\bar{H}|S_n) = \frac{P(S_n|\bar{H}) \cdot P(\bar{H})}{P(S_n)}$$
 car, d'après la formule de Bayes, $P(S_n|\bar{H}) \cdot P(\bar{H}) = P(\bar{H}|S_n) \cdot P(S_n)$.

D'une part, $P(S_n|\bar{H}) \cdot P(\bar{H}) = \frac{1}{2^n} \cdot p$. D'autre part, les événements H et \bar{H} ont une union disjointe et certaine, d'où (formule des probabilités totales) : $P(S_n) = P(H) \cdot P(S_n|H) + P(\bar{H}) \cdot P(S_n|\bar{H}) = (1-p) \cdot \frac{1}{6^n} + p \cdot \frac{1}{2^n}$.

Donc
$$u_n = \frac{\frac{1}{2^n} \cdot p}{(1-p) \cdot \frac{1}{6^n} + p \cdot \frac{1}{2^n}}.$$

4.
$$u_n = \frac{\frac{1}{2^n} \cdot p}{\frac{1}{2^n} \cdot p} \cdot \frac{1}{\frac{1}{3^n p} - \frac{1}{3^n} + 1} \xrightarrow{n \to \infty} 1.$$

Exercice 8 (Formule des probabilités composées - Oral Mines Ponts PC 2016).

Soit $n \in \mathbb{N}^*$. Une urne contient n boules blanches et n boules noires.

- 1. On tire deux boules de l'urne simultanément.
 - Soit S_1 l'événement : « On tire une boule blanche et une boule noire de l'urne ». Déterminer, en fonction de n, la probabilité de S_1 .
- 2. On tire toutes les boules de l'urne (sans remise), deux par deux.

Montrer que la probabilité d'obtenir, à chaque tirage, une boule blanche et une boule noire vaut $\frac{2^n}{\binom{2n}{n}}$.

Pour $1 \le i \le n$, notons S_i l'événement « le i-ième tirage donne une boule blanche et une boule noire » et A l'événement dont on cherche la probabilité. On a

$$A = S_1 \cap S_2 \cap \cdots \cap S_n$$
 (*n* succès).

La formule des probabilités composées donne :

$$\mathbb{P}(A) = \mathbb{P}(S_1) \times \mathbb{P}_{S_1}(S_2) \times \mathbb{P}_{S_1 \cap S_2}(S_3) \times \dots \times \mathbb{P}_{S_1 \cap \dots \cap S_{n-1}}(S_n). \tag{1}$$

Chacun des n facteurs est la probabilité p_k de tirer une boule blanche et une boule noire quand on tire simultanément 2 boules dans une urne contenant k boules blanches et k boules noires (avec k variant de n à 1).

Lorsque l'urne contient 2k boules (k blanches et k noires) cette probabilité est (par équiprobabilité) :

$$p_k = \frac{\text{nb de cas favorables}}{\text{nb de cas possibles}} = \frac{k^2}{\binom{2k}{2}} = \frac{k^2}{\frac{2k(2k-1)}{2}} = \frac{k}{2k-1}$$

On peut retrouver cette probabilité p_k en considérant qu'on tire 2 boules sans remise et alors $p_k = \mathbb{P}(B_1 \cap N_2) + \mathbb{P}(N_1 \cap B_2) = \frac{k}{2k} \times \frac{k}{2k-1} + \frac{k}{2k} \times \frac{k}{2k-1} = \frac{k}{2k-1}$. En reprenant (1), il vient alors :

$$\mathbb{P}(A) = p_n \times p_{n-1} \times \dots \times p_1 = \frac{n}{2n-1} \times \frac{n-1}{2n-3} \times \dots \times \frac{2}{3} \times \frac{1}{1} = \frac{2^n (n!)^2}{(2n)!} = \frac{2^n}{\binom{2n}{n}}$$

Exercice 9 (LOI DU 0-1 DE BOREL, oral Mines Ponts PC 2019). On lance indéfiniment un dé équilibré.

- 1. Soit A_n l'événement « aucun 6 n'a été obtenu lors des n premiers lancers ». Déterminer $P(A_n)$.
- 2. Soit F_k l'événement « le premier 6 est obtenu au k-ième lancer ». Déterminer $P(F_k)$.
- 3. Soit K l'événement « 6 n'apparaît jamais ». Exprimer K à l'aide des A_n . En déduire P(K).

- 4. Exprimer K en fonction des F_k . Retrouver la valeur de P(K).
- 5. Soient G l'événement « 6 apparaît une infinité de fois » et H l'événement « 6 apparaît à tous les lancers sauf un nombre fini d'entre eux ». Calculer P(G) et P(H).

On note B_i l'événement « Au ième lancer on a un 6 ».

- 1. Les lancers sont indépendants : $P(A_n) = P(\overline{B_1} \cap \cdots \cap \overline{B_n}) = P(\overline{B_1}) \dots P(\overline{B_n}) = (\frac{5}{6})^n$.
- 2. On obtient, en invoquant l'indépendance des lancers ou la loi géométrique :

$$P(F_k) = P(A_{k-1} \cap B_k) = P(A_{k-1})P(B_k) = \left(\frac{5}{6}\right)^{k-1} \frac{1}{6}$$

3. On trouve $K = \bigcap_{n=1}^{\infty} A_n$, et les (A_n) formant une suite décroissante. Par le théorème de continuité décroissante

$$P(K) = \lim_{n \to \infty} P(A_n) = 0.$$

4. On a aussi $K = \bigcap_{k=1}^{\infty} \overline{F_k} = \overline{\bigcup_{k=1}^{\infty} F_k}$. La réunion étant disjointe, $P(\bigcup_{k=1}^{+\infty} F_k) = \sum_{k=1}^{\infty} P(F_k) = \sum_{k=1}^{\infty} (\frac{5}{6})^{k-1} \frac{1}{6} = 1$. On retrouve la valeur

$$P(K) = 1 - P\left(\bigcup_{k=1}^{\infty} F_k\right) = 0.$$

5. (a) Soit G l'événement « 6 apparaît une infinité de fois ». Son contraire est : « 6 apparaît un nombre fini de fois », ou encore « à partir d'un certain rang, on n'a plus de 6 », soit :

$$\overline{G} = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{+\infty} \overline{B_k}.$$

Si on note $C_n = \bigcap_{k=n}^{\infty} \overline{B_k}$, les (C_n) forment une famille croissante. Par théorème de continuité croissante on a donc $P(\overline{G}) = P(\bigcup_{n=1}^{\infty} C_n) = \lim_{n \to +\infty} P(C_n)$. Mais pour tout N, $P(C_n) \leqslant P(\bigcap_{k=n}^n \overline{B_k}) = \prod_{k=n}^n P(\overline{B_k})$ par indépendance des lancers, donc $P(C_n) \leqslant (\frac{5}{6})^{N-n+1}$, donc $P(C_n) = 0$. Alors $P(\overline{G}) = 0$ donc P(G) = 1.

(b) Soit H l'événement « 6 apparaît à tous les lancers sauf un nombre fini d'entre eux », ou encore « à partir d'un certain rang, on n'a plus que des 6 », soit

$$H = \bigcup_{n=1}^{+\infty} \bigcap_{k=n}^{\infty} B_k.$$

Si on pose $D_n = \bigcap_{k=n}^{\infty} B_k$, les (D_n) forment une famille croissante. Par théorème de continuité croissante, on a donc $P(H) = P(\bigcup_{n=1}^{\infty} D_n) = \lim_{n \to \infty} P(D_n)$. Mais pour tout N, $P(D_n) \leqslant P(\bigcap_{k=n}^n B_k) = \prod_{k=n}^n P(B_k)$ par indépendance des lancers, donc $P(D_n) \leqslant (\frac{1}{6})^{N-n+1}$, donc $P(D_n) = 0$. Finalement,

$$P(H) = 0$$