CORRIGÉ DE LA COLLE Nº 08

Réduction & suites de fonctions

21 novembre 2025

Exercice 1 (Diagonaliser la transposée). Soient $n \in \mathbb{N}^*$ et $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

- 1. Montrer que : si une matrice $P \in \mathcal{M}_{nn}(\mathbb{K})$ est inversible, alors sa transposée P^T l'est aussi. Exprimer alors $(P^T)^{-1}$ en fonction de P^{-1} .
- 2. Montrer qu'une matrice $A \in \mathcal{M}_{nn}(\mathbb{K})$ et sa transposée ont le même spectre.

On suppose désormais que la matrice ${\cal A}$ est diagonalisable.

- 3. Montrer que A^T est diagonalisable et comparer les dimensions des sep de A et de A^T .
- 4. Soit P une matrice inversible telle que $P^{-1} \cdot A \cdot P = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. Pour chaque $j \in [1, n]$, on note C_j la j-ième colonne de la matrice P et $X_j = (P^T)^{-1} \cdot P^{-1} \cdot C_j$.

Montrer que : $\forall (i,j) \in [1,n]^2$, $X_j^T \cdot C_i = \delta_{ij}$.

- 5. En déduire que : $A = \sum_{j=1}^{n} \lambda_j C_j \cdot X_j^T$.
- 6. Calculer $A^T \cdot X_i$ et conclure.

5. Soit
$$i \in [1, n]$$
. D'une part, $AC_i = \lambda_i C_i$ par définition. D'autre part, $\left(\sum_{j=1}^n \lambda_j C_j X_j^T\right) C_i = \sum_{j=1}^n \lambda_j C_j \delta_{ij} = \lambda_i C_i$. Or les vecteurs C_i forment une base de l'ev $\mathcal{M}_{n1}(\mathbb{K})$. Donc $A = \sum_{i=1}^n \lambda_j C_j X_j^T$.

6.
$$A^T = \sum_{j=1}^n \lambda_j X_j C_j^T$$
. D'où $\forall i \in [1, n]$, $A^T \cdot X_i = \sum_{j=1}^n \lambda_j X_j C_j^T X_i = \sum_{j=1}^n \lambda_j X_j \delta_{ij} = \lambda_i X_i$. Les n vecteurs colonnes X_i sont donc des vecteurs propres de la matrice A^T .

Par ailleurs, ces n vecteurs sont libres car ce sont les images, par la matrice inversible $(P^T)^{-1} \cdot P^{-1}$, des vecteurs C_j qui sont libres. Ils forment donc une base de l'ev $\mathcal{M}_{n1}(\mathbb{K})$.

La famille $(X_i)_{i \in [1,n]}$ est donc une base de l'ev $\mathcal{M}_{n1}(\mathbb{K})$ formée de vecteurs propres de la matrice A^T .

^{1.} En transposant $P \cdot P^{-1} = P^{-1} \cdot P = I_n$, on obtient : $(P^{-1})^T \cdot P^T = P^T \cdot (P^{-1})^T = I_n$, donc P^T est inversible et son inverse $(P^T)^{-1}$ est $(P^{-1})^T$.

^{2.} Soit $x \in \mathbb{K}$: $(xI_n - A)^T = xI_n - A^T$ or une matrice et sa transposée ont le même déterminant, d'où $\chi_A(x) = \chi_{A^T}(x)$, or les valeurs propres sont les racines du polynôme caractéristique, donc $\operatorname{Sp}(A) = \operatorname{Sp}(A^T)$.

^{3.} En transposant $D = P^{-1}AP$, on obtient : $D^T = P^TA^T(P^{-1})^T$. Or $D^T = D$ car D est diagonale et $P^TA^T(P^T)^{-1}$ car $(P^T)^{-1} = (P^{-1})^T$. D'où $D = P^TA^T(P^T)^{-1}$. Donc A^T est diagonalisable. De plus, A et A^T ont les mêmes valeurs propres car celles-ci sont les éléments diagonaux de la même matrice D. Enfin, les sep de A et de A^T ont les mêmes dimensions car la dimension de $SEP(\lambda)$ est égale au nombre de fois que λ apparaît sur la diagonale de D.

^{4.} Le vecteur colonne $P^{-1}C_j$ est égal à E_j , le j-ième vecteur colonne de la base canonique de $\mathcal{M}_{n1}(\mathbb{K})$. D'où $X_j^T \cdot C_i = \left[(P^T)^{-1} \cdot P^{-1} \cdot C_j \right]^T C_i = E_j^T \cdot E_i = \delta_{ij}$.

Exercice 2.

- 1. (a) Montrer que, pour chaque $n \in \mathbb{N}^*$, l'intégrale impropre $u_n = \int_1^{+\infty} e^{-x^n} dx$ est convergente.
 - (b) Etudier la limite de la suite (u_n) .
- (a) Montrer que l'intégrale impropre $A = \int_{1}^{+\infty} \frac{e^{-x}}{x} dx$ est convergente.
 - (b) Montrer que, pour chaque $n \in \mathbb{N}^*$: $nu_n = \int_1^{+\infty} \frac{e^{-t}}{t^{1-\frac{1}{n}}} dt$.
 - (c) En déduire que : $u_n \sim \frac{A}{n \to \infty}$.
- (a) Etudier la limite de la suite $v_n = \int_0^1 e^{-x^n} dx$.
 - (b) Soit, plus généralement, une fonction $f:[0,1]\to\mathbb{R}$ continue. Etudier la limite, quand n tend vers l'infini, de $\int_0^1 f(x^n) dx$.
- 1. Pour tous $n \in \mathbb{N}^*$ et $x \in [1, +\infty[$, on pose $f_n(x) = e^{-x^n}$.
 - (a) Soit $n \in \mathbb{N}^*$. Pour tout $x \in [1, +\infty[$, $0 \le f_n(x) \le e^{-x}$. Or $\int_1^{+\infty} e^{-x} dx$ est convergente. Donc l'intégrale u_n est une intégrale convergente.
 - (b) On utilise le théorème de la convergence dominée : $\forall x \in [1, +\infty[, |f_n(x)| \le e^{-x} \text{ (indépendant de } n) \text{ et } \int_1^{+\infty} e^{-x} dx$ est convergente. Or $f_n(x) \xrightarrow[n \to \infty]{} f(x) = \begin{cases} 1/e \text{ si } x = 1 \\ 0 \text{ si } x > 1 \end{cases}$. La fonction f est continue et $\int_1^{+\infty} f(x) \, dx = 0$. Donc

SECONDE MÉTHODE (en ouvrant l'intervalle en 1) : $\forall x \in]1, +\infty[, |f_n(x)| \le e^{-x}$ (indépendant de n) et $\int_1^{+\infty} e^{-x} dx$ est convergente. Or $\forall x > 1$, $f_n(x) \underset{n \to \infty}{\longrightarrow} f(x) = 0$. La fonction f est continue par morceaux et $\int_1^{+\infty} f(x) dx = 0$.

- (a) Pour tout x ∈ [1, +∞[, 0 ≤ e^{-x}/x ≤ e^{-x}. Or l'intégrale ∫₁^{+∞} e^{-x} dx est convergente. Donc l'intégrale A aussi.
 (b) Soit n ∈ N*. On fait le CDV t = xⁿ (dt = nxⁿ⁻¹dx). La fonction x → xⁿ est strictement monotone et de classe C¹, d'où : $nu_n = \int_1^{+\infty} \frac{e^{-t}}{t^{1-\frac{1}{n}}} dt$. Pour tous $n \in \mathbb{N}^*$ et $t \in [1, +\infty[$, on pose $g_n(t) = \frac{e^{-t}}{t^{1-\frac{1}{n}}}$.
 - (c) On utilise le théorème de la convergence dominée : $\forall t \in [1, +\infty[, |g_n(t)| \le e^{-t} \text{ et } \int_1^{+\infty} e^{-t} dt$ est convergente. Or $g_n(t) \underset{n \to \infty}{\longrightarrow} g(t) = \frac{e^{-t}}{t} \underbrace{\operatorname{car}}_t t^{1-\frac{1}{n}} = e^{(1-\frac{1}{n})\ln t} \underset{n \to \infty}{\longrightarrow} e^{\ln t} = t$ par continuité de la fonction exp. D'où $nu_n \underset{n \to \infty}{\longrightarrow} e^{-t} \underbrace{\operatorname{car}}_t t^{1-\frac{1}{n}} = e^{(1-\frac{1}{n})\ln t} \underset{n \to \infty}{\longrightarrow} e^{-t} \underbrace{\operatorname{car}}_t t^{1-\frac{1}{n}} = e^{(1-\frac{1}{n})\ln t} \underset{n \to \infty}{\longrightarrow} e^{-t} \underbrace{\operatorname{car}}_t t^{1-\frac{1}{n}} = e^{(1-\frac{1}{n})\ln t} \underset{n \to \infty}{\longrightarrow} e^{-t} \underbrace{\operatorname{car}}_t t^{1-\frac{1}{n}} = e^{(1-\frac{1}{n})\ln t} \underset{n \to \infty}{\longrightarrow} e^{-t} \underbrace{\operatorname{car}}_t t^{1-\frac{1}{n}} = e^{(1-\frac{1}{n})\ln t} \underset{n \to \infty}{\longrightarrow} e^{-t} \underbrace{\operatorname{car}}_t t^{1-\frac{1}{n}} = e^{(1-\frac{1}{n})\ln t} \underset{n \to \infty}{\longrightarrow} e^{-t} \underbrace{\operatorname{car}}_t t^{1-\frac{1}{n}} = e^{(1-\frac{1}{n})\ln t} \underset{n \to \infty}{\longrightarrow} e^{-t} \underbrace{\operatorname{car}}_t t^{1-\frac{1}{n}} = e^{-t} \underbrace{\operatorname{car}}$ $\int_0^1 g(t) dt. \text{ D'où } \frac{u_n}{A/n} = \frac{nu_n}{n \to \infty} \text{ 1. Donc } u_n \underset{n \to \infty}{\sim} \frac{A}{n}.$ (a) Pour tous $n \in \mathbb{N}^*$ et $x \in [0, 1]$, on pose $f_n(x) = e^{-x^n}$. On utilise le théorème de la convergence dominée : $\forall x \in [0, 1]$
- $[0,1], |f_n(x)| \le 1$ (fonction indépendante de n) et $\int_0^1 1 \, dx$ est convergente. Or $f_n(x) \xrightarrow[n \to \infty]{} f(x) = \begin{cases} 1/e \text{ si } x = 1 \\ 1 \text{ si } 0 \le x < 1 \end{cases}$ La fonction f est continue par morceaux et $\int_0^1 f(x) dx = 1$. Donc $\lim_{x \to \infty} v_n = 1$.

SECONDE MÉTHODE (en ouvrant l'intervalle en 1) : Pour tous $n \in \mathbb{N}^*$ et $x \in [0, 1[$, on pose $f_n(x) = e^{-x^n}$. On utilise le théorème de la convergence dominée : $\forall x \in [0, 1[, |f_n(x)| \le 1 \text{ (fonction indépendante de } n) \text{ et } \int_0^1 1 \, dx \text{ est convergente.}$ Or $\forall x \in [0, 1[, f_n(x) \underset{n \to \infty}{\longrightarrow} f(x) = 1$. La fonction f est continue et $\int_0^1 f(x) dx = 1$. Donc $\lim_{n \to \infty} v_n = 1$.

- (b) Pour tous $n \in \mathbb{N}^*$ et $x \in [0,1]$, on pose $g_n(x) = f(x^n)$. La fonction |f| est continue sur le segment [0,1], elle est donc bornée. Soit M un majorant de |f|: $\forall x \in [0,1], \ |g_n(x)| \leq M$ (indépendant de n) et $\int_0^1 M \, dx$ est convergente. Or $g_n(x) \underset{n \to \infty}{\longrightarrow} g(x) = \begin{cases} f(1) \text{ si } x = 1 \\ f(0) \text{ si } 0 \le x < 1(*) \end{cases}$. La fonction g est continue par morceaux et $\int_0^1 g(x) \, dx = f(0)$. Donc $\lim_{n\to\infty}\int_{-1}^{1}f(x^n)\,dx=f(0)$ d'après le théorème de la convergence dominée
 - $(*) \ \underline{\text{En effet}}, \, \text{si} \ x \in [0,1[, \, \text{alors} : n \to \infty \implies x^n \to 0 \implies f(x^n) \to f(0) \, \, \text{car} \, \, f \, \, \text{est continue par hypothèse}.$