C orrigé du Kdo du 24/11/2025

Probabilités

Cet exercice porte sur la loi du zéro-un de Borel.

▷ L'exercice 9 du T.D. nº 6 en est un cas particulier.

Soit (Ω, \mathcal{A}, P) un espace probabilisé et $(E_n)_{n \in \mathbb{N}}$ une suite d'événements de \mathcal{A} . Soit F l'ensemble des résultats $\omega \in \Omega$ tels que ω appartient à une infinité de E_n .

- 1. Montrer que $F = \bigcap_{n \geq 0} \left(\bigcup_{k \geq n} E_k \right)$.
- 2. L'ensemble F est-il un événement ?
- 3. Que peut-on dire de la suite $(A_n)_{n\in\mathbb{N}}$ des événements définis par $A_n = \bigcup_{k\geq n} E_k$?
- 4. On suppose que la série $\sum P(E_n)$ converge.

Montrer que P(F) = 0

- 5. On suppose, dans cette question, que $(\overline{E_n})_{n\in\mathbb{N}}$ est une famille d'événements indépendants et que la série $\sum P(E_n)$ diverge.
 - (a) Soit $n \in \mathbb{N}$. Montrer que, pour tout $N \geq n$,

$$\ln\left(P\left(\bigcap_{p=n}^{N} \overline{E_p}\right)\right) \le -\sum_{p=n}^{N} P(E_p).$$

- (b) En déduire la limite, quand $N \to \infty$, de $P\left(\bigcap_{p=n}^{N} \overline{E_p}\right)$.
- (c) Montrer que, pour chaque $n \in \mathbb{N}$,

$$P\left(\bigcap_{p\geq n} \overline{E_p}\right) = 0.$$

(d) Conclure que P(F) = 1

1. Soit $\omega \in \Omega$:

$$\begin{array}{lll} \omega \in F & \Leftrightarrow & \omega \text{ appartient à une infinit\'e de } E_k \\ & \Leftrightarrow & \forall n \in \mathbb{N}, \ \exists \ k \geq n, \ \omega \in E_k \\ & \Leftrightarrow & \forall n \in \mathbb{N}, \ \omega \in \bigcup_{k \geq n} E_k \\ & \Leftrightarrow & \omega \in \bigcap_{n \geq 0} \bigcup_{k \geq n} E_k \end{array}$$

- 2. F est une intersection dénombrable d'unions dénombrables d'événements. Les tribus sont stables par unions et intersections, finies ou dénombrables. Par conséquent, $F \in \mathcal{A}$, autrement dit : F est un événement.
- 3. $\bigcup_{k\geq n} E_k = (\bigcup_{k\geq n+1} E_k) \bigcup E_n$ d'où $\bigcup_{k\geq n+1} E_k \subset \bigcup_{k\geq n} E_k$

La suite (A_n) est donc une suite décroissante d'événements.

4. $F = \bigcap_{n>0} A_n$ et la suite (A_n) est décroissante, d'où (par continuité décroissante) : $P(F) = \lim_{n \to \infty} P(A_n)$.

Et par σ -sous-additivité, pour chaque $n \in \mathbb{N} : P\left(\bigcup_{k \geq n} E_k\right) \leq \sum_{k=n}^{\infty} P(E_k)$ car la série $\sum P(E_k)$ converge par hypothèse.

Donc, pour chaque $n \in \mathbb{N} : 0 \le P(A_n) \le \sum_{k=n}^{\infty} P(E_k)$.

Par hypothèse, la série $\sum P(E_n)$ est convergente. Par conséquent, la suite de ses restes converge vers 0:

$$\lim_{n \to +\infty} \left(\sum_{k=n}^{\infty} P(E_k) \right) = 0$$

On conclut, par le théorème des gendarmes, que : $P(A_n)$ tend vers 0. Donc P(F) = 0.

5. (a) Les événements $\overline{E_p}$ étant indépendants, on sait que, pour tout $(n, N) \in \mathbb{N}^2$ tel que $n \leq N$:

$$P\left(\bigcap_{p=n}^{N} \overline{E}_{p}\right) = \prod_{p=n}^{N} P(\overline{E}_{p}).$$

On peut alors écrire :

$$\ln \left(P\left(\bigcap_{p=n}^{N} \overline{E}_{p} \right) \right) = \sum_{p=n}^{N} \ln \left(P(\overline{E}_{p}) \right) = \sum_{p=n}^{N} \ln \left(1 - P(E_{p}) \right) \le -\sum_{p=n}^{N} P(E_{p})$$

 $\operatorname{car} \ln(1+x) \le x$ pour tout réel x > -1.

(b) La série $\sum P(E_n)$ étant divergente, on sait qu'elle tend vers $+\infty$ (car tous les termes sont positifs). Par théorème de comparaison, on en déduit que :

$$\ln \left(P \left(\bigcap_{p=n}^{N} \overline{E}_{p} \right) \right) \underset{N \to \infty}{\longrightarrow} -\infty \quad \text{d'où} \quad P \left(\bigcap_{p=n}^{N} \overline{E}_{p} \right) = \exp \left(\ln \left(P \left(\bigcap_{p=n}^{N} \overline{E}_{p} \right) \right) \right) \underset{N \to \infty}{\longrightarrow} 0$$

- (c) Soit $n \in \mathbb{N}$. Pour chaque $N \geq n$, $\bigcap_{p \geq n} \overline{E_p} \subset \bigcap_{p=n}^N \overline{E_p}$. Par croissance de la probabilité, on en déduit que $0 \leq P\left(\bigcap_{p \geq n} \overline{E_p}\right) \leq P\left(\bigcap_{p=n}^N \overline{E_p}\right)$. Les inégalités larges passent à la limite $N \to \infty$, donc $P\left(\bigcap_{p \geq n} \overline{E_p}\right) = 0$.
- (d) Une union, finie ou dénombrable, d'événements presque impossibles est encore un événement presque impossible \triangleright corollaire 14. Or $\overline{F} = \bigcup_{n \geq 0} \left(\bigcap_{p \geq n} \overline{E}_k \right)$ est une union dénombrable d'événements presque impossibles d'après la question précédente.

D'où $P(\overline{F}) = 0$. Donc $P(F) = 1 - P(\overline{F}) = 1$.