Chapitre VIII Produits scalaires
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VIII.1 QU’EST-CE QU’UN PRODUIT SCALAIRE 7

DEFINITION 1

Soient un R—espace vectoriel E et une application ¢ : Ex E = R, (z,y) — ¢(x,y). On dit que ¢ est
une forme :

bilinéaire si Vz € E, Wy € E, Vz € B, Ya € R, VB € R,
plax + By, 2) = ap(z,z) + Be(y,2) et @(z,az + PBy) = ap(z,z) + Bo(2,y)

symétrique si  Vx € E, Yy € E, o(x,y) = p(y,x);
IE' définie si  Va € E, [p(x,2) =0 = z =0g];
|E| positive si  Vx € E, p(z,z) > 0.

DEFINITION 2
Soit E un R—espace vectoriel. Si ¢ : E? — R est une forme bilinéaire symétrique définie positive, alors :

1. on dit que ¢ est un produit scalaire. Le produit scalaire p(x,y) € R de deux vecteurs x € F et
y € E est aussi noté (z|y), (z,y), (z|y) ou x - y.

2. le carré scalaire ¢(x, ) = (x|x) est positif. Sa racine carrée est notée

2] = v/ (z|z)

et est appelée la norme (associée a ce produit scalaire) du vecteur x.

On peut définir des produits scalaires sur différents espaces vectoriels de dimension finie : R, M, (R),
R,[X], - -- ou de dimension infinie : R[X], C([a,b]), --- Un R — ev muni d’un produit scalaire est appelé
un espace préhilbertien; un R — ev de dimension finie muni d’un produit scalaire est appelé un espace
euclidien.

EXEMPLE 3 (Quelques produits scalaires, appelés canoniques) —

1. L’espace vectoriel E = R™ est un espace euclidien quand on le munit du produit scalaire

n gl Y1
(X,)Y) = leyz =X".Y  pour tous vecteurs X = | : etY =
i=1 z, Yn
La norme associée a ce produit scalaire est
[ X[ = /2 + +a22 = XT.X
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CHAPITRE VIII. PRODUITS SCALAIRES

2. L’espace vectoriel M, (R) de matrices n x n est un espace euclidien quand on le munit du produit
scalaire

(A,B) = Z aijbij = tr(AT - B)  pour toutes matrices A = (a;;) et B = (bi;).
(5,4)€[1,n]?

La norme associée a ce produit scalaire est

4] = > ad = \/t(AT - A).
\/ (i.4)€[L.n]?

3. L’espace vectoriel C([a,b]) des fonctions continues sur un segment [a,b] est un espace préhilbertien

b
quand on le munit du produit scalaire < f,g >= / f(®)g(t) dt.

La norme associée a ce produit scalaire est || f|| = \/f: f2(¢) dt.

EXERCICE 4 — Soit I un intervalle. On note Lo(I) l'ensemble des fonctions f continues par morceaus et
de carré intégrable sur I, c’est-a-dire : Uintégrale [, f2(t)dt (qui est peut-étre impropre) converge. Montrer
que :

le produit de deux fonctions de carré intégrable est intégrable ;

lensemble Lo(I) est un espace vectoriel ;

Uensemble La(I) NC(I) des fonctions continues et de carré intégrable sur I est aussi un ev ;

o v~

< f,g>= /f(t)g(t) dt est défini pour tous f € Lo(I) et g € Lo(I) et que c’est un produit scalaire
I
sur Lo (I) N C(I) mais pas sur La(I).

On peut définir sur un méme espace vectoriel plusieurs produits scalaires. Et, a chaque produit scalaire,
est alors associé sa norme.

EXERCICE 5 — Soit n € N.
1. Montrer que

3

+1
o(P.Q) = / POQWd o B(PQ) =S PRQMK)

-1 k=0

sont deuz produits scalaires sur ’espace vectoriel R, [X] et écrire la norme associée a chaque produit
scalaire.

2. Montrer que ¢ est encore un produit scalaire sur ’espace vectoriel R[X], mais que 1 ne l’est plus.

VIII.2 (IN)EGALITES

THEOREME 6 (Inégalité de Cauchy-Schwarz)
Soit (-,-) un produit scalaire sur un espace vectoriel E :

VeeE, vyeE, [(z,y)] <[z -yl

et il y a égalité si, et seulement si, les vecteurs = et y sont colinéaires.

Preuve —
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VIIL2. (IN)EGALITES

— Si y = 0g, 'inégalité est vraie. Sinon, soit :

f) =< THAy,z+AYy>=X <y,y>4+2\ <z, y>+ <z, > caret.

Cette fonction f est un polynome de degré 2 (car < y,y > est strictement positif) et VA € R, P(\) > 0 car le produit

scalaire est positif . Le discriminant A =4 < z,y >2 —4 < 2,2 > < y,y > du polynéme f est donc inférieur ou
égal & zéro.

Dot < z,y >2<< z,xz ><y,y >. Donc | <zyy>|<V<zz>V/<Y,y >
— Si x et y sont colindaires, alors INER, y = Az ouz = Ay. Dol < zly >2= A2 < z|z >2=<z|z > < yly > .

Réciproquement : ou bien y = O, les vecteurs x et y sont alors colinéaires. Ou bien y # Og, le discriminant A du
polynéme f est alors nul. D’ou
INER, f(A)=0.

D’ou < & + Ay|z + Ay >= 0. Or le produit scalaire est défini @, d’ott £ + Ay = 0. Donc z et y sont colinéaires.
[}

EXEMPLE 7 —

1. Pour tous (x1, -+ ,xn) € R™ et (y1, - ,yn) € R,

1/2 1/2

n n n n
PIETEDBLITES DL N D
i=1 i=1 i=1 i=1

Preuve — L’inégalité de Cauchy-Schwarz est vraie pour le produit scalaire canonique de R™. On l'applique aux deux
vecteurs (|z1l], - ,|zn]) € R™ et (Jy1l, -+, |ynl). O

/ab g*(t) dx

Preuve — L’inégalité de Cauchy-Schwarz est vraie pour le produit scalaire canonique de C([a, b]) On applique auz

2. Pour toutes fonctions [ et g continues sur |a,b],

1/2 1/2

b b b
/ F(t) g(t) | < / () g(0)] dt < / oL

deuz fonctions |f| et |g| qui sont bien continues sur [a, b). O

/If(t)g(t)dt’ < /I|f(t)g(t)| dt < (/Ifz(t)dt)m (/Igz(t)dx>1/2

Preuve — Le produit de deux fonctions de La(I) est intégrable et l'inégalité de Cauchy-Schwarz est vraie pour le

3. Plus généralement,

Vf e La(I), Vg € Lo(I),

produit scalaire canonique de La(I). (Sauf que : ce produil scalaire n’en est pas un car il est posilif mais pas défini;
mais la démonstration de l'inégalité de Cauchy-Schwarz n'utilise pas le caractére défini.) On lapplique auz deux

fonctions |f| et |g| qui sont bien dans La(I). O

COROLLAIRE 8
Soit (:|-) un produit scalaire sur un R—espace vectoriel E. La norme

[l E=Ry, 2= /(22)

vérifie les trois propriétés :
l.VeeE, |z||=0 = z=0g;
2.V \z) eRxE, ||X-z|| =\l
3. V(z,y) € E?, |z +yl <|lz||+ |yl (inégalité triangulaire).

Preuve —
1. ||lz|]] =0 =< z|z >= 0 =z = 0 car le produit scalaire est défini EI

2. < Az|dz>= X < z[Ax >= A2 < z|r > car le produit scalaire est bilinéaire .

Dot [[Az[|> = A% [|z[|*. Done Azl = [A][lz].
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le+yl? =<z+ylz+y>
=<zlz>+<yly>+2<zly>
<zl + llyl? +2 < aly >
< lzl® + Ilyll® + 2ll=|| ||yl d’apres 'inégalité de Cauchy-Schwarz

< (lz)l + llyll) >

O
REMARQUE 9 — FEn calculant
() Nz +yllP =l + gl +2(zly) et () =yl =[] + yl? - 2(zly)

puis la différence (x) — (xx) et la somme (x) + (xx), on obtient les quatre égalités
20zly) = llz+yl* —ll=l* — [yl (1)
2(zly) = fz* +lyll* — lla - yl? (2)
Kzly) = |z +yl* [z —yl? (3)
2zl +2lyl* = lle+yl*+ |z -y (4)

Les trois premiéres sont les égalités de polarisation, la quatriéme est l’égalité du parallélo-
gramme : la somme des carrés des quatre cotés est égale a la somme des carrés des deuz diagonales.

VIII.3 ORTHOGONALITE

DEFINITION 10
Soit (-|-) un produit scalaire sur un espace vectoriel . Soient « € E et y € E deux vecteurs. Soient A et B
deux parties de E. On dit que :

1. z est orthogonal a y, et on note = L y, si
(zly) =0
2. x est orthogonal a B, et on note x L B, si = est orthogonal a tout vecteur de B :
Vye B, z Ly;
3. A est orthogonal a B, et on note A L B, si tout vecteur de A est orthogonal a tout vecteur de B :

Vre A Vye B, x Ly.
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VIIL.3. ORTHOGONALITE

+1
EXEMPLE 11 — Soient l'espace vectoriel E = C([—1,+1]) et le produit scalaire < f,g >= F(t)g(t)de.
1

1. Les fonctions uw € E et v € E définies par

Vo e [-1,+1], u(@)=1+2 et ov(z)=2— 5z

+1
sont orthogonales (v L v) car < u,v >= / (1+t%)(2 - 5t*) dt = 0.
—1

2. Si f est une fonction paire et g est une fonction impaire, alors f L g car

+1

f(®)g(t)dt =0 car la fonction fg est impaire.

-1
On en déduit que le sev I des fonctions impaires de E est orthogonal au sev P des fonctions paires
de B :11P

PROPOSITION 12
Si n vecteurs v1,va, ...,V sont orthogonaux deux a deux (Vi # j,v; L v;), alors

n 2 n
> v =2 Il
i=1 i=1

Preuve —

n n
< E v; | § v > = g < wilvj > car le produit scalaire est bilinéaire
i=1  j=1 1<i,j<n

n
=Z<Ui|vi> car i #j = < v;|lv; >=0.
i=1

REMARQUE 13 — 1. La réciproque est toujours vraie pour n = 2 vecteurs u € E etv € E :
ulv <= |ju+ol®=|ul®+]|v|? ( théoréme de Pythagore)

Preuve — |Ju+v||? = ||ul|® + ||v]|2 + 2 < u,v > est égal a ||ul|® + ||v]|? si, et seulement si, < u,v >= 0. O
2. La réciproque n’est pas vraie pour plus de 2 vecteurs. Voici un contre-exemple avec 8 vecteurs : un
vecteur u # Op et deux vecteurs v =w = —2u.

PROPOSITION-DEFINITION 14
On dit qu'une famille (v;);e; finie ou infinie de vecteurs est orthogonale si ses vecteurs sont orthogonaux
deux a deux : V(i,j) € I?, i #j = v; Lv,.

Toute famille orthogonale de vecteurs non nuls est libre.

Preuve — On rappelle qu’une famille infinie de vecteurs est libre si toutes ses sous-familles finies sont libres. Soit donc une
famille orthogonale (v1,--- ,vn) finie de vecteurs non nuls. On veut montrer que :

z1v1 4+ apvp =0 = z1 = =z, =0.
Pour chaque ¢ € [1,n] :

11+ -+ Tnon =0 = (z1v1 + -+ + Tnon|v;) = Ogle;) = z; =0 car v, #0p.
N——

=z;(v;|vy) =0
(]

DEFINITION 15
Soit (:|-) un produit scalaire sur un espace vectoriel E. Soit A une partie de E. L'ensemble des vecteurs de
E orthogonaux a tous les vecteurs de A est appelé I'orthogonal de A et est noté AL :

At ={ycE|Vzc A,z 1Ly}.
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| En particulier o+ = E.

EXERCICE 16 — 1. Montrer que {0g}* = E et que E+ = {0g}.

2. Soit le produit scalaire canonique sur l’espace vectoriel R3. Soit le vecteur @ = (1,2,3). Déterminer

une base de (Vect @)~.
+1

3. Soit le produit scalaire (P, Q) = / P(t)Q(t) dt sur lespace vectoriel E = Ro[X]. Soit le polynéme
1

U =1+ X2. Déterminer une base de (Vect U)> .

ProprosiTION 17
Soient A et B deux parties d'un espace préhilbertien E.
1. L'orthogonal d'une partie de E est un sev de F.
2. A1 B+ ACB* < BcCA".
3. Ac (AhH)*
4. si Aestun sev de E, alors AN A+ = {0}, autrement dit les sev A et A+ sont en somme directe.

Preuve —

1. Soit A une partie de E. On veut montrer que AL est stable par combinaisons linéaires et est non vide. D’une part,
A~ contient le vecteur nul car O est orthogonal & tout vecteur de E, donc en particulier & tout vecteur de A. D’autre
part,

Ve AT, Vye AL VAER, VU eER, Ar+puye At
carVz€ A, <zldz+py>=AX<zlz>+p <zly>=0.

2. A1lB < Vec€Axl1lB < Ve Axzec Bt < Ac BL

Deméme Bl A < BCAL. OrBlA < ALlB.

3. On applique la propriété précédente aux deux parties A et B = AL,

4. Le vecteur nul appartient 3 AN AL (car A et AL sont des sev de E). Réciproquement : si un vecteur x appartient a
ANAL alors z 1L 2, dou < 2,z >=0, donc « = 0f car IEI

O

VIII.4 BASES ORTHONORMEES
DEFINITION 18
Soit (-|-) un produit scalaire sur un espace vectoriel E. On dit que :

1. un vecteur z € E est normé si sa norme est égale a 1 : ||z = 1.

2. une famille (&;);es finie ou infinie de vecteurs est une famille orthonormée si ses vecteurs sont
normés et deux a deux orthogonaux :

V(l,j) S .[2, <€i|€j> = (5”

Si une famille orthonormée est une base de E, alors on dit que c'est une base orthonormée de F.

Travailler dans une base orthonormée simplifie les calculs. Soit C = (g1, - ,£,) une base orthonormée
d’un espace euclidien (E, (-, -)). Soient deux vecteurs = x161 + -+ Tpep €t y = y161 + -+ + Ynn :
1. Vie[1,n], ;= (z|e);

2. (zly) =x191 4+ + Tnyn = szyz =XT.v, o0 X=[z]c et Y =[ylc;
i=1

3. ||:U||2::r:%—i—---—i—x%:z:x%:XT-X.
i=1

4. Si A = (a;;) est la matrice d’'un endomorphisme f dans la b.o.n. C, alors a;; =< &;|f(g;) > .

Preuve —

1. Pour chaque i € [1,n] :

T1E1 4+ Tnen = = (T1€1 + T22 + - + Tnenle;) = (xle)) = x; = (ze;).

=x;
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VIIL.5. L’ALGORITHME DE GRAM-SCHMIDT

2. (aly) = O wiedl Yoy = >
i=1 j=1 =

j = i=1j

n
ziyjlede;) = D miyidiy =Y iy
1 1<i,j<n i=1

3. C’est le cas particulier x = y.

n
4. On calcule le produit scalaire des deux vecteurs &; et f(e;) = Z agj€k-
k=1

VIIL.5 IJALGORITHME DE GRAM-SCHMIDT

Existe-t-il toujours une base orthonormée ? La réponse est : oui, si 'espace vectoriel est de dimension
finie. Pour le démontrer, on utilise I’algorithme de Gram-Schmidt : il change une base B = (e1,e2,- -+ ,€5)
d’un espace euclidien (E, < -|- >) en une nouvelle base C = (e1,¢€3, -+ ,&,) orthonormée.

ETAPE N°1 : e; —> £; vecteur normé

e €1 el
—
On veut que |le1]| =1 : £ = ——.
llex]]
ETAPE N°2 :  (£1,e3) —> (£1,&2) famille orthonormée
Soit €9 = €9 — A\je7 Ey Leg <= A\ =< 62|€1 > .
&2
On veut que |lea]| =1 g9 = ——.
[[€2]]

ETAPE N°3 :  (£1,€2,e3) — (£1,2,¢3) famille orthonormée

Soit ég =e3 — )\181 — )\282 : ég le <= )\1 =< €3|€1 > . €3 /:
§3J_€2<:>)\2=<€3|€2>. = :

é
On veut que |le3]| =1 : g3 = —>.
l1€3ll
ETAPE N°n : (€1, -+ ,&n_1,6n) — (€1, ** ,En_1,En) b.on. de £
n—1
Soit &y = e, — » Mg+ Vie [ln—1],
=1 En Le <= N\ =<eyle;>.
En
On veut que ||| =1 Enp =
[[€nll
REMARQUE 19 — 1. A chaque BTAPE N° k € [1,n], la famille de k vecteurs (z1,--- ,&5) est une
base orthonormée du sous-espace vectoriel Vect(ey, - ,er) = Vect(ey, - ,ex) et < exlex > est
strictement positif.
2. De plus, la b.o.n. (€1, -+ ,&,) fournie par Ualgorithme de Gram-Schmidt est l'unique base vérifiant

la propriété 1.
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EXERCICE 20 — Déterminer une base orthonormée de lespace euclidien Ro[X] muni du produit scalaire

+1

<PQ >:/ PHQ(t) dt.

-1

VIII.6 PROJECTION ORTHOGONALE (SUR UN sev DE DIMENSION FINIE)

PROPOSITION-DEFINITION 21
Soit (-]} un produit scalaire sur un espace vectoriel E. Soit F' un sous-espace vectoriel de dimension finie. I
existe une unique application linéaire p : E — I telle que

Vo € E, p(z) e F et x—p(z) L F.

On I'appelle la projection orthogonale sur F'. Si (¢1,--- ,,) est une base orthonormée de F, alors le
projeté orthogonal d'un vecteur x € E s'écrit :

n

p(x) = (xl|e1)er + -+ (xlen) en = Z<$|El>€z

=1
X

|
|
|
|
ev I/ |

O sev F
Op p(x)

Preuve — Unicité : Supposons qu’il existe une projection orthogonale p. Choisissons une b.o.n. (¢1, -+ ,en) de F. Le

projeté orthogonal d’un vecteur z € E peut alors s’écrire p(x) = A1e1 + -+ + Anén car p(x) € F. De plus, pour chaque
i€ [1,n], (z—p(x)le;) =0carz—p(z) L F. Dol (z|e;) = (p(z)|es). Or (p(x)|e;) = A; car la base est orthonormée. Donc
n

pla) = (alei)ei (%)

=1

On a démontré la formule (*) de la projection orthogonale et donc son unicité.

Existence : Soit p : E — E définie par la formule (x). L’application p est linéaire, p(z) € F pour tout z € Eet x —p(z) L F

car (zle;) = (p(x)|e;) pour chaque i € [1,n]. O

EXERCICE 22 — 1. On travaille dans Uespace vectoriel E = R® avec le produit scalaire canonique :
écrire la matrice, dans la base canonique de R3, de la projection orthogonale sur le plan F d’équation
z+y=0.

+1

2. On travaille dans R[X] avec le produit scalaire < P,Q >= / P(t)Q(t) dt. Montrer que le projeté
—1

3
orthogonal du polynéme X3 sur le sous-espace vectoriel Ro[X] est gX.

COROLLAIRE 23
Soit (+|-) un produit scalaire sur un espace vectoriel E. Soit F' un sous-espace vectoriel de dimension finie.

1. F et son orthogonal F* sont supplémentaires : F @ F+ = E.
2. Par suite :

70



VII1.6. PROJECTION ORTHOGONALE (SUR UN sev DE DIMENSION FINIE)

(a) la projection orthogonale sur F est le projecteur sur F parallelement 3 F+;
(b) F = (F*+)*.

Preuve — La projection orthogonale sur F' existe car F' est de dimension finie. Tout vecteur = € E s’écrit donc x =
p(z) + 2 —p(z). Donc E = F + FX. De plus FN F+ = {0g}. Donc la somme est directe. Et p est le projecteur sur F'
N~ N——

€F 1F
parallelement & FL.

Que le sev soit ou non de dimension finie, on a : F C (F1)+. Reste & montrer que (F)1 C F si F est de dimension
finie : soit un vecteur x € (F+)+. Comme E = F @ F1, on peut décomposer ce vecteur : x =y +z oty € F et z € F*.
D’une part, € (F+)+ par hypothese. D’autre part, y € F C (FX)+. Dol z =z —y € (F+)L. Or z € F+. Dot le vecteur
zest nul. Doncxz =y +0¢€ F. (]

PROPOSITION 24 (Théoréme des moindres carrés)
Soit (-]} un produit scalaire sur un espace vectoriel E. Soit F' un sous-espace vectoriel de dimension finie.
Soit & un vecteur de E. Le projeté orthogonal p(x) de x sur F est I'unique vecteur de F' tel que

VyeF,  z—p)| <z -yl

Preuve — (Voir figure ci-dessous.) Soient x € E et y € F :

x —p(z) Lp(z) —y car ¢ — p(x) L F et p(x) —y € F. D’ou (Pythagore) : ||z — y||? = ||z — p(z)[|> + |lp(=) — /.

x
|
|
|
|
E |
' F
Op p(z) Y
Donc ||z — p(z)|| < |lz — y.
(]
REMARQUE 25 — 1. D’aprés le théoréme des moindres carrés, la fonction

F=R, y=z -yl

posséde un minimum. Ce minimum est atteint une seule fois : en p(x).
2. Le réel

z —p(x)| = min ||z —

lz = p(2)|| = min ||z — y|

est appelé la distance entre le vecteur x et le sous-espace vectoriel F et est noté
d(z, F).

3. D’aprés le théoréme de Pythagore, ||z||* = ||z — p(z)||? + ||p(z)||*. D’ou

Ilp(x)|| < ||z|| (inégalité de Bessel)

d(z, F) = min ||z —y|| = [z —p(z)l| = Vl* - [lp(=)]
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CHAPITRE VIII. PRODUITS SCALAIRES

EXERCICE 26 — Montrer que la fonction f définie pour tous (a,b,c) € R® par

+1 9
f(a,b,c):/ (t* —at® —bt — )" dt

—1

posséde un minimum : en quel(s) point(s) (a,b,c) ? Quelle est la valeur de ce minimum ¢

VIII.7 HYPERPLANS

PROPOSITION 27
Soit E un ev muni d'un produit scalaire.
1. L'orthogonal d'une droite vectorielle D est un hyperplan H : D+ = H.
2. Si E est de dimension finie, alors I'orthogonal d'un hyperplan H est une droite vectorielle D : H+ = D.

Preuve —
1. Une droite vectorielle D = Vect(a) est dirigée par un vecteur non nul a € E. Soit z € E un vecteur :
z€Dt &= zla = <a,z>=0 < u(z) =0,

ou l'application v : E — R, z —< a,z > est une forme linéaire. Cette forme linéaire n’est pas nulle car
u(a) =< a,a ># 0. D’olt D est le noyau d’une forme linéaire non nulle. Donc D est un hyperplan.

2. Si E est de dimension finie n et si H est un hyperplan de E, alors H @ H+ = E et dimH =n — 1. D’ol1 dim H+ = 1.
Donc H+ est une droite vectorielle de E. (Cette propriété n’est pas toujours vraie en dimension infinie, comme on le
verra en TD.)

O

EXERCICE 28 — Soit E un espace euclidien.

1. Soit un vecteur a non nul orthogonal a un hyperplan H. Montrer que :

Vze B, d(z,H)= |<|‘|ZC|LT|>|.

2. Soit D = Vect(a) la droite vectorielle dirigée par un vecteur a non nul. Montrer que :

_ VlalPlz]? - {al)*

el

Ve € B, d(z,D)

THEOREME 29 (de représentation de Riesz)
Soit E un ev de dimension finie, muni d'un produit scalaire. Pour toute forme linéaire ¢ : E — R, il existe
un unique vecteur a € E tel que : Vz € E, ¢(z) = (a|z).

Preuve — Si E est de dimension n, alors on peut construire une base orthonormée (g1, - ,&,) de E en utilisant 1’algorithme
de Gram-Schmidt. Dans cette base orthonormée, tout vecteur x € F s’écrit © = x1e1 + -+ + Tnen, d’oll

e(z) = z10(e1) + - + Tnp(en) = (alz)

en posant a = p(e1)e1 + -+ - + @(en)en. Ce vecteur a convient donc. Et il est unique : par I’absurde, si deux vecteurs a et
b conviennent, alors (a|z) = (blz) pour tout z € E. D’ol le vecteur b — a est orthogonal & tous les vecteurs de E. Donc

b—a =0g. (Cette propriété n’est pas toujours vraie en dimension infinie, comme on le verra en TD.) O
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