CORRIGÉ DE LA COLLE Nº 09

Suites de fonctions

27 novembre 2025

Exercice 1. Soit, pour chaque $n \in \mathbb{N}$, la fonction f_n définie, pour tout $x \in \mathbb{R}$, par :

$$f_n(x) = n(1-x)^n \sin\left(\frac{\pi}{2}x\right).$$

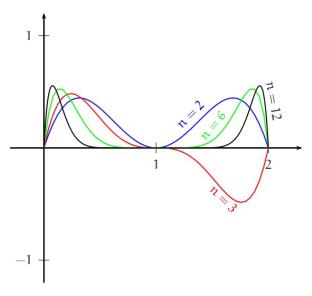


Figure 1 – La suite des fonctions $f_n: x \mapsto n(1-x)^n \sin\left(\frac{\pi}{2}x\right)$.

- 1. Montrer que la suite (f_n) converge simplement sur [0,2]; vers quelle fonction f?
- 2. Montrer que la convergence est uniforme sur tout segment [1-b,1+b] (où $b \in]0,1[)$ inclus dans]0,2[.
- 3. La convergence est-elle uniforme sur]0,2[?]
- 4. Etudier la limite, quand n tend vers ∞ , de la suite $\int_0^2 f_n(x) dx$.

Si x = 0 ou x = 2, alors f_n(x) = 0 → 0. Si x ∈]0,2[, alors |f_n(x)| ≤ n|1 - x|ⁿ = exp (ln(n) + n ln |1 - x|) → 0 car 0 < |1 - x| < 1. Donc la suite (f_n) converge simplement sur [0,2] vers la fonction nulle f : [0,2] → ℝ, x → 0.
Soit b ∈]0,1[. Pour tout x ∈ [1 - b, 1 + b], |f_n(x) - f(x)| ≤ nbⁿ, d'où sup |f_n - f| ≤ nbⁿ → 0. D'où la convergence

est uniforme sur tout segment [1-b,1+b], où $b\in]0,1[$, donc aussi sur tout segment inclus dans]0,2[. 3. Pour chaque $n\in \mathbb{N}^*$, $\frac{1}{n}\in]0,2[$ et $|f_n(\frac{1}{n})-f(\frac{1}{n})|=n|1-\frac{1}{n}|^n\sin\frac{\pi}{2n}\underset{n\to\infty}{\longrightarrow}\frac{\pi}{2e}.$ D'où $\sup_{]0,2[}|f_n-f|$ ne tend pas vers 0 quand n tend vers ∞ . Donc la convergence n'est pas uniforme sur]0,2[.

4. On vérifie, par le calcul, ce que suggère le graphique : $|f_n(1-t)| = |f_n(1+t)|$ pour tout $t \in]0,1[$. On en déduit que sup $|f_n| = \sup_{[0,1]} |f_n|$. Or, pour tout $x \in [0,1]$, $0 \le f_n(x) \le n(1-x)^n \frac{\pi}{2} x = g_n(x)$. On étudie les variations de la fonction g_n sur [0,1] : son maximum est $g_n(\frac{1}{n+1}) = \frac{\pi}{2} \frac{n}{n+1} (1-\frac{1}{n+1})^n \le \frac{\pi}{2}$. D'où $|f_n(x)| \le \frac{\pi}{2}$ pour tout $x \in [0,2]$. Puis on applique le théorème de la convergence dominée pour montrer que $\int_0^2 f_n(x) \, dx \xrightarrow[n \to \infty]{0} \int_0^2 f(x) \, dx = 0$.

Exercice 2. Soit, pour chaque $n \in \mathbb{N}^*$, la fonction f_n définie par :

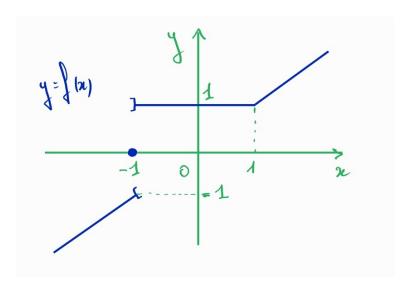
$$\forall x \in \mathbb{R}, \quad f_n(x) = \frac{1 + x^{2n+1}}{1 + x^{2n}}.$$

- 1. Montrer que la suite de fonctions (f_n) converge simplement sur \mathbb{R} . Vers quelle fonction f? Représenter graphiquement cette fonction f.
- 2. La convergence est-elle uniforme sur \mathbb{R} ?
- 3. Montrer que, pour tous $n \in \mathbb{N}^*$ et $x \in]1, +\infty[$:

$$\frac{x-1}{x^{2n}-1} \le \frac{1}{2n}.$$

- 4. La convergence de (f_n) vers f est-elle uniforme sur $]1, +\infty[$?
- 5. Montrer que la convergence de la suite (f_n) est uniforme sur [0,1].
- 1. Si |x| > 1, alors $f_n(x) \xrightarrow[n \to \infty]{} x$. Si |x| < 1, alors $f_n(x) \xrightarrow[n \to \infty]{} 1$. Si x = -1, alors $f_n(-1) = 0 \xrightarrow[n \to \infty]{} 0$. Si x = 1, alors $f_n(1) = 1 \xrightarrow[n \to \infty]{} 1$. La suite de fonctions (f_n) converge donc simplement vers la fonction

$$f\,:\, \mathbb{R} \to \mathbb{R}, \ x \to x \text{ si } x < -1, \ 0 \text{ si } x = -1, \ 1 \text{ si } -1 < x \leq 1, \ x \text{ si } x > 1.$$



- 2. La convergence n'est pas uniforme sur $\mathbb R$ car les fonctions f_n sont continues sur $\mathbb R$ mais f n'est pas continue en -1.
- 3. Pour tout $x \in]1, +\infty[$,

$$0 \le f(x) - f_n(x) = \frac{x-1}{1+x^{2n}} \le \frac{x-1}{x^{2n}-1} = \frac{1}{1+x+\dots+x^{2n-1}} \le \frac{1}{2n}.$$

4. La question précédente montre que $\frac{1}{2n}$ est un majorant de la fonction $|f_n - f|$. Or le \sup est le plus petit majorant. D'où $0 \le \sup_{]1,+\infty[} |f - f_n| \le \frac{1}{2n}$. D'après le théorème des gendarmes, $\sup_{]1,+\infty[} |f - f_n| \xrightarrow[n \to \infty]{} 0$. Donc la suite de fonctions (f_n) converge uniformément vers f sur $]1,+\infty[$.

5. Pour tout $x \in [0, 1]$,

$$0 \le f(x) - f_n(x) = \frac{x^{2n}(1-x)}{1+x^{2n}} \le \frac{x^{2n}(1-x)}{1-x^{2n}} \le \frac{x^{2n}}{1+x+\dots+x^{2n-1}} \le \frac{1}{2n}$$

$$\operatorname{car} \frac{x^{2n}}{1+x+\dots+x^{2n-1}} = \begin{cases} 0 \text{ si } x = 0 \\ \frac{1}{\frac{1}{x^{2n}} + \frac{x}{x^{2n}} + \dots + \frac{x^{2n-1}}{x^{2n}}} \text{ sinon} \end{cases} . \text{ Or } \frac{1}{2n} \text{ ne dépend pas de } x. \text{ D'où } \sup_{[0,1]} |f - f_n| \leq \frac{1}{2n} \text{ car}$$
 le \sup est le plus petit des majorants. De plus, $\frac{1}{2n} \underset{n \to \infty}{\longrightarrow} 0$. D'où $\sup_{[0,1]} |f - f_n| \underset{n \to \infty}{\longrightarrow} 0$ d'après le théorème des gendarmes.

Donc la suite de fonctions (f_n) converge uniformément vers f sur [0,1].

Exercice 3 (Dénombrement).

- 1. Soient deux entiers $n \geq p \geq 1$. Quel est le nombre d'injections d'un ensemble à p éléments dans un ensemble à n éléments?
- 2. Soient un entier n supérieur ou égal à 2 et $k \in [2, n]$. Quel est le nombre de k-cycles du groupe symétrique S_n ?
- 1. Construire une injection de $[\![1,p]\!]$ vers $[\![1,n]\!]$, c'est :
 - choisir pimages dans [1, n], il y a $\binom{n}{p}$ manières;
 - construire une bijection de [1, p] vers l'ensemble de ces images, il y a p! manières.

Le nombre d'injections d'un ensemble à p éléments dans un ensemble à n éléments vaut dinc $\binom{n}{p}$! = $\frac{n!}{(n-p)!}$ = $n(n-1)\cdots(n-p+1)$.

- 2. Construire un k-cycle du groupe symétrique S_n , c'est :
 - choisir dans [1, n] les k éléments dérangés par le cylce, il y a $\binom{n}{k}$ manières;
 - ordonner ces k éléments dans une k-liste, il y a k! manières;
 - remarquer que chaque cycle est représenté par k listes, on divise donc par k.

Le nombre de k-cycles du groupe symétrique S_n est donc $\binom{n}{k} \frac{k!}{k} = \binom{n}{k} (k-1)!$.