D.S. Nº 4 DE MATHÉMATIQUES

Durée : 4 heures. Les calculatrices sont interdites.

Cet énoncé contient deux exercices et un problème.

Dans chacun d'entre eux, on peut toujours admettre les résultats des questions précédentes pour traiter les questions suivantes.

Exercice 1 (Centrale PSI 2024 Math 2).

Soient a et b deux réels tels que 0 < a < b.

1) Montrer que l'intégrale $\int_0^{+\infty} \frac{e^{-at} - e^{-bt}}{t} dt$ est convergente.

On admet que sa valeur est $\ln\left(\frac{b}{a}\right)$.

2) Soit, pour chaque $n \in \mathbb{N}^*$, $u_n = \sum_{k=1}^n \frac{1}{k} - \ln(n)$. Montrer que la suite (u_n) est convergente.

On notera γ sa limite.

3) Soit, pour tout t > 0,

$$f(t) = e^{-t} \left(\frac{1}{1 - e^{-t}} - \frac{1}{t} \right).$$

Montrer que la fonction f est positive et intégrable sur $]0, +\infty[$.

4) Soit, pour chaque $n \in \mathbb{N}^*$ et pour tout t > 0,

$$S_n(t) = e^{-t} \sum_{k=0}^{n} \left(e^{-kt} - \frac{e^{-kt} - e^{-(k+1)t}}{t} \right).$$

Montrer que la suite de fonctions (S_n) converge simplement sur $]0, +\infty[$: vers quelle fonction?

5) Montrer que
$$\int_0^{+\infty} f(t) dt = \sum_{n=0}^{\infty} \left(\frac{1}{n+1} - \ln \frac{n+2}{n+1} \right)$$
.

6) En déduire que $\int_0^{+\infty} f(t) dt = \gamma$.

Exercice 2 (CCINP PSI 2024 Math).

1) La fonction

$$x \mapsto \Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt$$

est appelée la fonction Gamma d'Euler.

Montrer que le réel $\Gamma(x)$ est défini si, et seulement si, x > 0.

2) Soit, pour chaque $n \in \mathbb{N}^*$,

$$f_n(t) = \begin{cases} \left(1 - \frac{t}{n}\right)^n t^{x-1} & \text{si } t \in]0, n[\\ 0 & \text{si } t \ge n \end{cases}$$

Montrer que la suite de fonctions (f_n) converge simplement sur $]0, +\infty[$: vers quelle fonction f?

3) Soit x > 0. Montrer que l'intégrale

$$I_n(x) = \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt$$

converge pour chaque $n \in \mathbb{N}^*$ et que

$$I_n(x) \underset{n \to \infty}{\longrightarrow} \Gamma(x).$$

4) Soit x > 0. Montrer que, pour chaque $n \in \mathbb{N}$, l'intégrale

$$J_n(x) = \int_0^1 (1-t)^n t^{x-1} dt$$

converge et que

$$J_{n+1}(x) = \frac{n+1}{x} J_n(x+1).$$

En déduire une expression de $J_n(x)$ pour chaque $n \in \mathbb{N}$ et tout x > 0.

5) Soit x > 0. Montrer que

$$I_n(x) = n^x J_n(x)$$

pour tout $n \in \mathbb{N}^*$ et en déduire l'identité d'Euler :

$$\Gamma(x) = \lim_{n \to \infty} \frac{n! \, n^x}{x(x+1) \dots (x+n)}.$$

PROBLÈME (CCP 2008 MP MATH 2)

Contexte et notations

Ce problème s'intéresse aux matrices ayant leurs valeurs propres sur la diagonale. Les matrices diagonales et les matrices triangulaires en sont des exemples banals.

- Dans ce problème, toutes les matrices sont à coefficients réels et n est un entier tel que $n \geq 2$.
- On dira qu'une matrice $A=(a_{ij})$ de $\mathcal{M}_n(\mathbb{R})$ est une **matrice à diagonale propre** si son polynôme caractéristique est scindé sur \mathbb{R} et si ses termes diagonaux sont ses valeurs propres avec une occurrence égale à leur multiplicité, c'est-à-dire :

A est à diagonale propre
$$\iff \chi_A(X) = \prod_{i=1}^n (X - a_{ii})$$

- On pourra noter en abrégé : A est une MDP pour « A est une matrice à diagonale propre ».
- On notera \mathcal{E}_n l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ à diagonale propre.
- On notera également S_n le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ formé des matrices symétriques et A_n le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ formé des matrices antisymétriques.

Exemples

- 1) Soit α un réel et $M(\alpha) = \begin{pmatrix} 1 & -1 & \alpha \\ 0 & 2 & -\alpha \\ 1 & 1 & 2-\alpha \end{pmatrix}$
 - a) Calculer sous forme factorisée le polynôme caractéristique de la matrice $M(\alpha)$.
 - b) En déduire que, pour tout réel α , la matrice $M(\alpha)$ est une matrice à diagonale propre.
 - c) Quelles sont les valeurs de α pour lesquelles la matrice $M(\alpha)$ est diagonalisable?
- 2) La matrice antisymétrique $A = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ est-elle une matrice à diagonale propre?
- 3) Déterminer \mathcal{E}_2

Quelques propriétés

- 4) Si A est une matrice de $\mathcal{M}_n(\mathbb{R})$ à diagonale propre, démontrer que, pour tout couple (a,b) de réels, les matrices $C = a A + b I_n$ et $C' = a ^t A + b I_n$ sont encore des matrices à diagonale propre. (On pourra distinguer le cas a = 0.)
- 5) On note G_n l'ensemble des matrices à diagonale propre inversibles. Démontrer que :

$$\forall A \in \mathcal{E}_n, \quad \exists p_0 \in \mathbb{N}^*, \quad \forall p \geqslant p_0, \quad A - \frac{1}{p} I_n \in G_n$$

6) Matrices trigonalisables

- a) Une matrice trigonalisable est-elle nécessairement une matrice à diagonale propre?
- b) Justifier qu'une matrice à diagonale propre est trigonalisable.
- c) Déterminer une condition nécessaire et suffisante pour qu'une matrice de $\mathcal{M}_n(\mathbb{R})$ soit semblable à une matrice à diagonale propre.
- 7) Démontrer que toute matrice de $\mathcal{M}_n(\mathbb{R})$ est somme de deux matrices à diagonale propre. \mathcal{E}_n est-il un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$?

Matrices symétriques et matrices antisymétriques

On pourra utiliser sans démonstration le résultat suivant appelé théorème spectral :

Tout élément de S_n est diagonalisable. Plus précisément, si $A \in S_n$, il existe une matrice inversible $P \in \mathcal{M}_n(\mathbb{R})$ d'inverse P telle que PAP soit diagonale.

8) Matrices symétriques à diagonale propre

- a) Soit $A = (a_{ij})$ une matrice symétrique de $\mathcal{M}_n(\mathbb{R})$, dont les valeurs propres sont notées $\lambda_1, \ldots, \lambda_n$. Démontrer que $\sum_{i=1}^n \sum_{j=1}^n a_{ij}^2 = \sum_{i=1}^n \lambda_i^2$.
- b) Déterminer l'ensemble des matrices symétriques réelles à diagonale propre.

9) Matrices antisymétriques à diagonale propre

Soit A une matrice antisymétrique de $\mathcal{M}_n(\mathbb{R})$ à diagonale propre.

- a) Démontrer que $A^n = 0$ et calculer $({}^tAA)^n$.
- b) Justifier que la matrice ${}^{t}AA$ est diagonalisable puis que ${}^{t}AA = 0$.
- c) Conclure que A est la matrice nulle.

Dimension maximale d'un espace vectoriel inclus dans \mathcal{E}_n

- 10) Rappeler, en le justifiant brièvement, la dimension de A_n .
- 11) Soit F un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ tel que l'on ait $F \subset \mathcal{E}_n$. Déterminer $F \cap \mathcal{A}_n$ et en déduire que dim $F \leq \frac{n(n+1)}{2}$. Quelle est la dimension maximale d'un sous-espace vectoriel F de $\mathcal{M}_n(\mathbb{R})$ vérifiant $F \subset \mathcal{E}_n$?
- 12) On suppose $n \ge 3$. Déterminer un sous-espace vectoriel F de $\mathcal{M}_n(\mathbb{R})$ vérifiant $F \subset \mathcal{E}_n$, de dimension maximale, mais tel que F ne soit pas constitué uniquement de matrices triangulaires.