FEUILLE DE T.D. Nº 8

Produits scalaires

Exercice 1. Soient x et y deux vecteurs non nuls d'un espace préhilbertien. On note $\|\cdot\|$ la norme associée au produit scalaire $\langle\cdot|\cdot\rangle$. Montrer que

$$\left\| \frac{x}{\|x\|^2} - \frac{y}{\|y\|^2} \right\| = \frac{\|x - y\|}{\|x\| \|y\|}.$$

Exercice 2. 1. Soient x, y et z trois réels strictement positifs. Montrer que

$$\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) \cdot (x + y + z) \ge 9.$$

Dans quels cas y a-t-il égalité?

2. Soit f une fonction continue et strictement positive sur un segment [a, b]. Montrer que

$$\int_{a}^{b} f(t) dt \times \int_{a}^{b} \frac{dt}{f(t)} \ge (b - a)^{2}$$

Dans quels cas y a-t-il égalité?

Exercice 3 (Quotient de Rayleigh). Soient $X \in \mathcal{M}_{n,1}(\mathbb{R})$ et $A \in \mathcal{M}_{n,n}(\mathbb{R})$ définis par

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R}) \quad \text{et} \quad A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 & 0 \\ & \ddots & \ddots & \ddots \\ 0 & & -1 & 2 & -1 \\ & & 0 & -1 & 2 \end{pmatrix}.$$

1. Montrer que

$${}^{t}XAX = 2\sum_{k=1}^{n} x_{k}^{2} - 2\sum_{k=1}^{n-1} x_{k}x_{k+1}.$$

2. Montrer que

$$\left| \sum_{k=1}^{n-1} x_k x_{k+1} \right| \le \sum_{k=1}^n x_k^2.$$

- 3. Que vaut $\frac{^tXAX}{^tXX}$ si X est un vecteur propre de la matrice A associé à la valeur propre $\lambda \in \mathbb{R}$?
- 4. En déduire que $\mathrm{Sp}(A) \subset [0,4].$

Exercice 4. On munit l'espace vectoriel $\mathcal{M}_n(\mathbb{R})$ du produit scalaire $\langle A, B \rangle = \operatorname{tr}(A^{t}B)$.

- 1. On note \mathcal{A}_n le sev des matrices antisymétriques et \mathcal{S}_n le sev des matrices symétriques de $\mathcal{M}_n(\mathbb{R})$. Montrer que :
 - (a) $\mathcal{A}_n \perp \mathcal{S}_n$;
 - (b) $\mathcal{A}_n^{\perp} = \mathcal{S}_n \text{ et } \mathcal{S}_n^{\perp} = \mathcal{A}_n;$
 - (c) pour tout $(M,S) \in \mathcal{M}_n(\mathbb{R}) \times \mathcal{S}_n$, $\|\frac{M-M^T}{2}\| \leq \|M-S\|$. Quelle est la distance $d(M,\mathcal{S}_n)$ de la matrice M au sous-espace vectoriel \mathcal{S}_n ?
- 2. On considère le cas n=2. Soit F le sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$ défini par :

$$F = \left\{ \begin{pmatrix} a & b \\ b & -a \end{pmatrix}, (a,b) \in \mathbb{R}^2 \right\}.$$

- (a) Déterminer une base de $F^{\perp} \triangleright \mathbf{Le}$ corrigé propose deux méthodes.
- (b) Déterminer la matrice A', image de $A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ par la projection orthogonale sur $F \triangleright \mathbf{Le}$ corrigé propose trois méthodes.

Exercice 5. Montrer que la fonction f définie pour tout $(a,b) \in \mathbb{R}^2$ par

$$f(a,b) = \int_{-\pi}^{\pi} (t - a\sin t - b\cos t)^2 dt$$

possède un minimum et calculer $\min_{(a,b)\in\mathbb{R}^2} f(a,b)$.

Corrigé manuscrit ci-dessous.

Exercice 6. 1. Montrer que $\langle P|Q \rangle = P(0)Q(0) + \int_0^1 P'(t)Q'(t) dt$ est un produit scalaire sur l'espace vectoriel $\mathbb{R}[X]$ des polynômes.

- 2. Calculer $\langle X^p | X^q \rangle$ pour chaque entier naturel p et chaque entier naturel q.
- 3. Soient F l'ensemble des polynômes constants et G l'ensemble des polynômes admettant 0 pour racine. Montrer que les sous-espaces vectoriels F et G sont orthogonaux.
- 4. Déterminer l'orthogonal de F et l'orthogonal de G.
- 5. Montrer que la distance d'un polynôme P au sous-espace vectoriel G vaut |P(0)|.

Exercice 7. Soit $E = \mathbb{R}[X]$ l'espace vectoriel des polynômes. Tout polynôme $P = \sum_{n=0}^{\deg(P)} a_n X^n$ sera aussi noté

 $\sum_{n=0}^{\infty} a_n X^n \text{ où } a_n \text{ est une suite nulle à partir d'un certain rang.}$

- 1. Soit $f: \mathbb{R}[X] \to \mathbb{R}$ la forme linéaire qui, à tout polynôme $P = \sum_{n=0}^{\infty} a_n X^n$, associe le réel $\sum_{n=0}^{\infty} \frac{a_n}{n+1}$. Montrer que l'application f est surjective.
- 2. Le produit scalaire de deux polynômes $P = \sum_{n=0}^{\infty} a_n X^n$ et $Q = \sum_{n=0}^{\infty} b_n X^n$ est défini par $\langle P, Q \rangle = \sum_{n=0}^{\infty} a_n b_n$. Montrer qu'il existe un réel K tel que, pour tout polynôme P de E,

$$|f(P)| \leq K \cdot ||P||$$
.

3. Soit F le noyau de f. Vérifier que le polynôme

$$R_{ij} = (j+1)X^j - (i+1)X^i$$

appartient à Ker(f) pour tous entiers naturels i et j.

4. En déduire que $F^{\perp} = \{0_{\mathbb{R}[X]}\}$ et que $(F^{\perp})^{\perp} \neq F$.

REMARQUE — L'application f est une forme linéaire non nulle, le sev F est donc un hyperplan. La dernière question prouve ainsi que, en dimension infinie, l'orthogonal d'un hyperplan n'est pas toujours une droite. \triangleright proposition VIII.27 & https://math-os.com/orthogonal-sev/

Exercice 8. On munit l'espace vectoriel $E = \mathbb{R}[X]$ du produit scalaire $\langle P(X)|Q(X)\rangle = \int_0^1 P(t)Q(t)\,dt$ et on définit la forme linéaire $h: E \to \mathbb{R}, \ P(X) \mapsto P(0)$. On suppose qu'un polynôme A(X) est tel que $h(P(X)) = \langle A(X)|P(X)\rangle$ pour tout $P(X) \in E$. Calculer $\langle A(X)|XA(X)\rangle$ et conclure.

Exercice 9. Soient E un espace euclidien, u et v deux vecteurs non nuls, et f l'endomorphisme défini par :

$$\forall x \in E, \quad f(x) = \langle v | x \rangle u.$$

- 1. Soit \mathcal{B} une base orthonormée de E, dans laquelle u et v sont représentés par les vecteurs colonnes U et V. Exprimer, grâce à ces vecteurs colonnes :
 - le produit scalaire $\langle u \mid v \rangle$;
 - la matrice, dans la base \mathcal{B} , de l'endomorphisme f.
- 2. Déterminer les noyau et image de f
- 3. On suppose que u n'est pas orthogonal à v. Montrer que les noyau et image de f sont supplémentaires et que f est diagonalisable. Quel est le spectre de f?
- 4. On suppose que u est orthogonal à v. Déterminer $f \circ f$. Les noyau et image de f sont-ils supplémentaires ? L'endomorphisme f est-il diagonalisable ?

Exercice 10 (La fonction zêta de Riemann est log-convexe).

On rappelle que
$$\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$$
 est défini pour tout $x > 1$.

On dit qu'une fonction f est log-convexe si la fonction f est strictement positive et si la fonction $\ln \circ f$ est convexe.

1. Soit $N \in \mathbb{N}^*$ et, pour tout x > 1, $S_N(x) = \sum_{n=1}^N \frac{1}{n^x}$. Montrer que la fonction S_N est deux fois dérivable sur $]1, +\infty[$ et que

$$\left[S_N'(x)\right]^2 \le S_N''(x) \cdot S_N(x)$$

pour tout x > 1.

- 2. En déduire que $[\zeta'(x)]^2 \le \zeta''(x) \cdot \zeta(x)$ pour tout x > 1 > corollaire 19 du chapitre VII.
- 3. Conclure que la fonction ζ est log-convexe.
- 4. Montrer que, si une fonction est log-convexe, alors elle est convexe.