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Exercice 1. Soit, pour chaque n ∈ N∗ et pour tout x ∈ R : fn(x) =
1

n
cosn(x) · sin(nx).

1. Montrer que f ′
n(x) = cosn−1(x) · cos [(n+ 1)x] pour tout x ∈ R.

2. Montrer que la série de fonctions
∑

fn converge simplement sur [0, π].

3. Soit, pour tout x ∈ [0, π], S(x) =

∞∑
n=1

fn(x).

(a) Montrer que la fonction S est de classe C1 sur ]0, π[ et que

∀x ∈]0, π[, S′(x) = −1.

(b) Calculer S(x) pour chaque x ∈ [0, π].

(c) La convergence de la série
∑

fn est-elle uniforme sur [0, π] ?

Figure 1 – Les fonctions

n∑
k=1

fk pour n ∈ {2, 10, 20, 50}

1. Avec un peu de trigo...

2. On veut montrer que, pour chaque x ∈ [0, π], la série numérique
∑

fn(x) converge :

— si x = 0 ou x = π, alors ∀n ∈ N∗, fn(x) = 0, d’où la série
∑

fn(x) converge ;



— si x ∈]0, π[, alors |fn(x)| ≤ | cosx|n−1. Or la série géométrique
∑

| cosx|n−1 converge car | cosx| < 1. D’où la série∑
|fn(x)| converge, donc la série

∑
fn(x) converge (absolument).

Donc la série de fonctions
∑

fn converge simplement sur [0, π].

3. (a) On applique le théorème de dérivation terme à terme sur un segment [a, b] ⊂]0, π[ :

— chaque fonction fn est C1 sur [a, b] car elle y est dérivable et sa dérivée, calculée en 1, est continue ;

— la série
∑

fn converge simplement sur [a, b] d’après 2 ;

— la série
∑

f ′
n converge uniformément sur [a, b] car (∗) ;

d’où la fonction S est C1 sur [a, b] et, pour tout x ∈ [a, b], S′(x) =
∞∑

n=1

f ′
n(x) = · · · = −1

(∗) ∀n ∈ N∗, ∀x ∈ [a, b], |f ′
n(x)| ≤ | cosx|n−1 ≤ qn−1, où q = max

x∈[a,b]
| cosx|. Ce max existe car la fonction

x 7→ |cos(x)| est continue sur le segment [a, b], elle y est donc bornée et atteint ses bornes. De plus |q| < 1 , d’où la
série

∑
qn converge, d’où la série de fonctions

∑
f ′
n converge normalement, donc uniformément sur [a, b].

(b) Si x = 0 ou x = π, alors ∀n ∈ N∗, fn(x) = 0, d’où S(x) = 0.

Pour tout x ∈]0, π[, S′(x) = −1, d’où S(x) = −x+ cte. Or, pour chaque n ∈ N∗, fn(π/2) = 0, d’où cte = π/2. Donc
S(x) = π

2
− x pour tout x ∈]0, π[.

(c) Chaque fonction fn est continue sur [0, π] mais la fonction S ne l’est pas, donc la convergence de la série
∑

fn n’est
pas uniforme sur [0, π].

Exercice 2. Soit, pour chaque n ∈ N∗, la fonction fn définie sur [0,+∞[ par

fn(x) = nx2e−x
√
n.

1. Montrer que la série de fonctions
∑

fn converge simplement sur [0,+∞[.

2. Montrer que la convergence de la série
∑

fn n’est pas normale sur [0,+∞[.

3. Soit a > 0. Montrer que la convergence est normale sur [a,+∞[.

4. Soit un entier naturel p > 0. Montrer que

∞∑
n=1

fn

(
2
√
p

)
≥ 4

e2
.

5. La série de fonctions
∑

fn converge-t-elle uniformément sur [0,+∞[ ? sur ]0,+∞[ ?

� Trois méthodes dans le corrigé.

1. Soit x > 0 : fn(x) = o
(

1
n2

)
car n2fn(x) = n3x2e−x

√
n =

1

x4
y6ne

−yn −→
n→∞

0, avec yn = x
√
n.

Or la série
∑ 1

n2 converge, d’où la série
∑

fn(x) converge. Donc la série de fonctions
∑

fn converge simplement sur
]0,+∞[. Et si x = 0, alors fn(0) = 0, d’où la série

∑
fn(0) converge. Donc la série de fonctions

∑
fn converge simplement

sur [0,+∞[.

2. Chaque fonction fn est dérivable sur ]0,+∞[ et f ′
n(x) = nx(2 − x

√
n)e−x

√
n. D’où sup

x∈[0,+∞[
|fn(x)| = fn

(
2√
n

)
= 4

e2
.

D’où la série
∑

sup
x∈[0,+∞[

|fn(x)| diverge, donc la série de fonctions
∑

fn ne converge pas normalement sur [0,+∞[..

3. (La même méthode a été utilisée à la � q.3 de l’exo 2 du TD no 5.) À partir d’un certain rang n,
2
√
n

≤ a, d’où (tableau

des variations) : ∀x > a, sup
x∈[a,+∞[

|fn(x)| = fn(a) Or la série
∑

fn(a) converge d’après la question 1, donc la série de

fonctions
∑

fn converge normalement sur [a,+∞[.

4.

∞∑
n=1

fn

(
2
√
p

)
≥ fp

(
2
√
p

)
=

4

e2
.

5. Soit S(x) =
∞∑

n=1

fn(x) :

— Première méthode � théorème 9 du chapitre VII. S(0) = 0 mais S
(

2√
p

)
ne tend pas vers 0 quand p → ∞

car S
(

2√
p

)
≥

4

e2
. D’où la fonction S n’est pas continue en 0, donc la série de fonctions

∑
fn ne converge pas

uniformément sur [0,+∞[. (Par l’absurde : si la convergence était uniforme sur [0,+∞[, alors la fonction S serait
continue sur [0,+∞[ car chaque fonction fn l’est.) Cette méthode ne permet pas de conclure sur l’intervalle ]0,+∞[.



— Deuxième méthode � théorème 12 du chapitre VII. Pour chaque n, fn(x) tend vers 0 quand x tend vers 0 mais S(x)
ne tend pas vers 0 quand x tend vers 0. Donc la série de fonctions

∑
fn ne converge pas uniformément sur ]0,+∞[.

(Par l’absurde : si la convergence était uniforme sur ]0,+∞[, alors limx→0 S(x) serait égal
∑∞

k=1 limx→0 fk(x)
d’après le théorème de la double limite.) A fortiori, il n’y a pas non plus convergence uniforme sur [0,+∞[.

— Troisième méthode � méthode 3 du chapitre VII. La série de fonctions
∑

fn ne converge pas uniformément
sur ]0,+∞[ car la suite des fonctions fn ne converge pas uniformément sur ]0,+∞[ vers la fonction nulle car

fn
(

2√
n

)
= 4

e2
ne tend pas vers 0. A fortiori, il n’y a pas non plus convergence uniforme sur [0,+∞[.

Exercice 3. Soit la suite des fonctions fn : [0, 1] −→ R définies, pour tout x ∈ [0, 1], par :

f0(x) = 1 et ∀n ∈ N, fn+1(x) = 1 +

∫ x

0

fn(t− t2) dt.

1. Calculer f1(x) pour tout x ∈ [0, 1].

2. Montrer par récurrence que, pour tous x ∈ [0, 1] et n ∈ N :

0 ≤ fn+1(x)− fn(x) ≤
xn+1

(n+ 1)!
.

3. Soit x ∈ R. Montrer que la série numérique
∑

xn

n! est convergente.

On rappelle que, pour tout réel x,
∞∑

n=0

xn

n!
= ex.

4. Montrer que pour tous x ∈ [0, 1] et n ∈ N, fn(x) ≤ ex.

5. En déduire que la suite de fonctions (fn) converge simplement sur [0, 1].

Soit, pour chaque x ∈ [0, 1], f(x) = lim
n→∞

fn(x).

6. Montrer que, pour tous x ∈ [0, 1] et n ∈ N, 0 ≤ f(x)− fn(x) ≤
∞∑

k=n+1

xk

k!
.

7. En déduire que la suite de fonctions (fn) converge uniformément sur [0, 1].

8. Montrer que, pour tout x ∈ [0, 1], f(x) = 1 +

∫ x

0

f(t− t2) dt.

1. Soit x ∈ [0, 1] : f1(x) = 1 +

∫ x

0
1 dt = 1 + x.

2. Montrons par récurrence que la propriété

Pn : ∀x ∈ [0, 1], 0 ≤ fn+1(x)− fn(x) ≤
xn+1

(n+ 1)!

est vraie pour chaque n ∈ N,

P0 est vraie car : ∀x ∈ [0, 1], f1(x)− f0(x) = x ≤ x.

Supposons Pn. Alors ∀x ∈ [0, 1], fn+2(x)− fn+1(x) =

∫ x

0

[
fn+1(t− t2)− fn(t− t2)

]
dt.

Si t ∈ [0, 1], alors t − t2 = t(1 − t) ∈ [0, 1]. D’où 0 ≤ fn+1(t − t2) − fn(t − t2) ≤
(t− t2)n+1

(n+ 1)!
d’après Pn. D’où

0 ≤ fn+1(t − t2) − fn(t − t2) ≤
tn+1

(n+ 1)!
car t − t2 = t(1 − t) et 0 ≤ (1 − t)n+1 ≤ 1. D’où, en intégrant de 0 à 1,

0 ≤ fn+2(x)− fn+1(x) ≤
xn+2

(n+ 2)!
par croissance de l’intégrale.

Donc Pn+1 est vraie et, par récurrence, la propriété Pn est vraie pour tout n ∈ N.



3. Soit x ̸= 0. La suite numérique un =
[x|n
n!

est strictement positive et
un+1

un
=

|x|
n+1

−→
n→∞

0 < 1, d’où la série
∑

un converge

d’après le critère de D’Alembert.

Donc la série numérique
∑ xn

n!
converge absolument pour tout x ̸= 0 et aussi pour x = 0.

4. Soient n ∈ N et x ∈ [0, 1] : fn(x) = f0(x) +

n−1∑
k=0

[fk+1(x)− fk(x)] ≤ 1 +

n−1∑
k=0

xn+1

(n+ 1)!
≤

∞∑
k=0

xn

n!
.

5. Soit x ∈ [0, 1] fixé. La suite numérique définie par vn = fn(x) est croissante car vn+1 − vn ≥ 0 (d’après la question 2) et
majorée par ex (d’après la question 4). D’où la suite numérique (vn) converge.

Donc la suite de fonctions (fn) converge simplement sur [0, 1].

6. Soit x ∈ [0, 1]. Pour tout N ≥ n,

0 ≤ fN (x)− fn(x) =

N−1∑
k=n

[fk+1(x)− fk(x)] ≤
N−1∑
k=n

xk+1

(k + 1)!
≤

N∑
k=n+1

xk

k!
.

Cette inégalité large passe à la limite lorsque N → ∞, donc 0 ≤ f(x)− fn(x) ≤
∞∑

k=n+1

xk

k!
.

7. D’après la question 6, ∀x ∈ [0, 1], |f(x)− fn(x)| ≤
∞∑

k=n+1

xk

k!
≤

∞∑
k=n+1

1

k!
. D’où

∞∑
k=n+1

1

k!
est un majorant, donc

sup
x∈[0,1]

|f(x)− fn(x)| ≤
∞∑

k=n+1

1

k!
. Or

∞∑
k=n+1

1

k!
−→
n→∞

0 car c’est le reste d’une série convergente d’après la question 3.

D’où sup
x∈[0,1]

|f(x)− fn(x)| −→
n→∞

0 d’après le théorème des gendarmes.

Donc la suite de fonctions (fn) converge uniformément sur [0, 1].

8. Soit x ∈ [0, 1] : fn+1(x) = 1 +

∫ x

0
fn(t − t2) dt. Quand n −→ ∞, fn(x) −→ f(x) car la suite de fonctions (fn)

converge simplement sur [0, 1]. Et

∫ x

0
fn(t − t2) dt −→

∫ x

0
f(t − t2) dt. On a interverti lim

n→∞
et

∫ x
0 car la suite de

fonctions gn : t 7→ fn(t − t2) converge uniformément sur [0, 1] : en effet, pour tout t ∈ [0, 1], t − t2 ∈ [0, 1] donc
|fn(t− t2)− f(t− t2)| ≤ sup

[0,1]
(|fn − f |) qui est indépendant de t et tend vers 0 quand n tend vers ∞ d’après la question 7.

Donc f(x) = 1 +

∫ x

0
f(t− t2) dt.


