Chapitre X Variables aléatoires
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X.1 VARIABLES ALEATOIRES DISCRETES
DEFINITION 1 1. Soit (£, &) un espace probabilisable. Une variable aléatoire discréte (vad) est une
fonction X définie sur 'univers Q telle que :

(i) I'ensemble X (£2) des valeurs prises par X est fini ou dénombrable;

(i) pour chaque valeur a € X () prise par X, I'ensemble X ~!({a}) est un événement, noté (X = a).
Autrement dit : Va € X(Q), (X =a) = X"'({a}) € &.

2. Soient (€2, .27, P) un espace probabilisé et X une vad. La loi de probabilité de X est la fonction

X(Q) —1[0,1], ar=> P(X = a).

L’ensemble X (€2) des valeurs prises par la vad X peut ne pas étre, ou étre inclus dans R : on dira
alors que X est une variable aléatoire réelle discrete (vard).

EXERCICE 2 — On lance deux dés : c’est une expérience aléatoire, quel est son univers 2 ¢ Soit X la vad
définie par la somme des deux dés. Préciser X () et, pour chaque a € X (Q), l’événement (X = a). On
suppose chaque résultat équiprobable : déterminer la loi de probabilité de X.

REMARQUE 3 — 1. Rappelons que (définition) : a € f~1(A) <= f(a) € A et que (propriétés) :
FUa)ure e e (a) =0
icl i€l iel iel

2. 81 X(Q) est un ensemble :
— fini de cardinal n + 1, alors on peut écrire X(Q) = {ag, - ,an} ={a;, i € I} o0 I =[0,n];
— dénombrable, alors X() = {ag, a1, ,an, -} ={a;, i €I}, oo I =N.

Dans les deux cas, la famille (X = a;)ier est un systéme complet d’événements (c’est une union
certaine et disjointe), donc

Y P(X=a) =1

icl

EXEMPLE 4 — On lance indéfiniment une piece qui tombe, de maniere équiprobable, sur Pile ou Face :
l'univers de cette expérience aléatoire est 'ensemble Q = {Pile; Face}" des suites de Pile et de Face. On
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CHAPITRE X. VARIABLES ALEATOIRES

mesure le temps d’attente T' du premier Pile : c’est la variable aléatoire discréte définie par

o0 st w est une suite de Face ;
T(w) =

le rang du premier Pile dans la suite w sinon.

L’ensemble T'(2) = N* U {oo} est dénombrable et, pour chaque n € N*, [’événement (T = n) contient
exactement Uinfinité des suites commencant par n — 1 Face suivi(s) de 1 Pile. L’événément (T = co) n’est
pas impossible, la famille (T = n)nen+ n'est donc pas un systeme complet d’événements. Mais c’est un
systéme quasi complet d’événements car ’événement (T = o00) est presque impossible d’aprés Uexercice 11
du chapitre V1. On pourra donc utiliser la formule des probabilités totales : pour tout événement A,

P(A) = i P(T =n) - P(AIT = n).
n=1

PROPOSITION 5
Soient (2,27, P) un espace probabilisé et une vad X : Q — E a valeurs dans un ensemble E.

(i) Pour tout A € P(E), X 1(A) € o est un événement noté aussi (X € A).
(i) L'application Px : P(E) — [0,1], A+ P(X € A) est une probabilité sur I'espace probabilisable
(E, P(E)).

Preuve —
(i) Soit A € P(E) une partie de E : 'ensemble X ~1(A) = X "1 (AN X(Q)) = U X~1({a}) est une union finie ou
a€ANX(Q)
dénombrable d’événements d’apres la définition 1. C’est donc un événement d’apres la définition d’une tribu.
(ii) D’apres la définition 6 du chapitre VI, Px est une probabilité sur I’espace probabilisable (E, P(E)) car :
— Px(E)=P(X~Y(E)) =1 car X~1(E) = Q est '"événement certain ;

— si ‘UIAi est une union disjointe et dénombrable de parties de E, alors X ! (_UIAi) = _UIX_l(Ai) est une
1€ 1€ 1€

. s . N N “1ia) — “104.)) — )
union disjointe et dénombrable, d’olt Px (igIAZ) =P (igIX (AZ)) = Z P(X™(Ay) = Z Px (Aj).

i€l i€l
O
En particulier, si la vad est a valeurs dans N, alors, pour tout n € N :
(X =n)=(Xc{n})=X""{n}) etonnote (X <mn)'événement (X € [0,n]) = X1([0,n]).
EXERCICE 6 — Une boite contient N boules numérotées de 1 a N. On tire n fois une boule au hasard en

la remettant a chaque fois dans la boite. Soit X la vad égale au maximum des numéros tirés. Déterminer
la loi de probabilité de X.

X.2 LA LOI BINOMIALE

DEFINITION 7
Soient n € N*, p €]0,1[ et ¢ = 1 — p. On dit qu'une variable aléatoire discréte X suit une loi binomiale de
paramétres (n,p) et on note X ~ B(n,p) si

X(@Q) =[0,n] et VkeX(Q), PX=Fk = (”) gk

On vérifie que Z P(X=k)=1.
k=0

Une épreuve de Bernoulli de parametre p €]0, 1] est une expérience aléatoire qui peut donner deux
résultats : un « succes » S avec une probabilité p ou un « échec » E avec la probabilité ¢ =1 — p.
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PRroproOSITION 8
Soient n € N* et p €]0, 1[. Soit X la vad égale au nombre de succes parmi n épreuves de Bernoulli de
paramétre p. Si ces épreuves sont indépendantes, alors X ~ B(n,p).

Preuve — Un résultat est une n—liste formée de S (succes) et de E (échec). L’événement (X = k) contient les n—listes

avec k fois S et n — k fois E : le nombre de n—listes est donc Z et la probabilité de chaque n—liste est p* - g™ * car les
épreuves sont indépendantes. Donc P(X = k) = (Z) cpk gk, O
EXEMPLE 9 — 1. Sin=1, alors X ~ B(1,p) :

x@=p11 . Px=0=(g) it =a @ px=0=(}) =

2. On lance n fois une piéce (c’est une expérience aléatoire). Si la piéce est équilibrée, alors la variable
aléatoire discrete X égale au nombre de Pile obtenus suit la loi binomiale B (n, %)

3. On tire au hasard avec remise n boules dans une boite contenant une proportion p de boules blanches
(c’est une expérience aléatoire). La variable aléatoire discrete X égale au nombre de boules blanches
tirées suit la loi binomiale B (n,p).

EXERCICE 10 — Montrer que, si X ~ B(n,p), alors la variable aléatoire n — X, qui mesure le nombre
d’échecs, suit aussi une loi binomiale : n — X ~ B(n,q).

X.3 LA LOI GEOMETRIQUE

DEFINITION 11
Soient p €]0,1[ et ¢ = 1 — p. On dit qu'une variable aléatoire discrete 1" suit une loi géométrique de
paramétre p et on note T' ~ G(p) si

TQ) =N e VkeT(Q), PT=k =p ¢ "

On vérifie que ZP(X =k) =1
k=1

Expérience aléatoire : on répete indéfiniment une épreuve de Bernoulli. On dit que le temps d’attente
du premier succes est k € N* si le premier succes arrive au k—ieéme essai. Par exemple T(EES---) = 3.

Ce temps d’attente est une variable aléatoire discrete T' et T'(£2) = N* (pas tout a fait : voir I'exemple
4). La proposition suivante montre que, si les épreuves de Bernoulli sont indépendantes, alors la loi du
temps d’attente est une loi géométrique.

ProrosiTioN 12
Soit p €]0,1]. Soit T la vad égale au temps d'attente du premier succes lors d'une suite d'épreuves de
Bernoulli de parameétre p. Si ces épreuves sont indépendantes, alors T' ~ G(p).

Preuve — L’événement (T = k) est l'intersection By N --- Ex_1 N Ey, oul B}, est 'événement « La k—ieme épreuve de
Bernoulli réalise un échec », de probabilité ¢g. Or les épreuves de Bernoulli sont indépendantes, donc P(T = k) = pgt—t. O

EXERCICE 13 — Soit X une va qui suit une loi géométrique de paramétre p €]0,1[. Calculer P(X > n)
pour chaque n € N.
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CHAPITRE X. VARIABLES ALEATOIRES

X.4 LA LOI DE POISSON

DEFINITION 14

Soit un réel A > 0. On dit qu'une variable aléatoire discrete X suit une loi de Poisson de parameétre ) et
on note X ~ P(\) si

X(@Q) =N et VkeX(Q), PX=k=e? 2

On vérifie que Z P(X=Fk)=1.
k=0

La loi de Poisson a été introduite en 1838 par Siméon Denis Poisson (1781-1840). Elle permet
d’approximer une loi binomiale grace a la proposition suivante.

PROPOSITION 15
Soient un réel A\ > 0 et, pour chaque n € N*, une variable aléatoire X,, qui suit une loi binomiale B(n,p,,),

avec p, €]0,1[. Si  n-p, — , alors
n—oo
)\k
VkeN, PX,=k) — e . —.
n— 00 k!
Lti de Poisson Plambda) avec bambeia=4 ef loi Binomiale B{n,p) mec =10 ef p=440 Loi de Poisson Plambia) avec kambxda=4 et loi binoméale B(n,p) avec 1=100 et p=4/100
0.25 025,
0.3 ; .21 P
0.5 & 0151
0.1 0.1 T
O Q)
o
005+ 0.051
‘ O |
9] i\ »
=] . Y o -~ -
! > 1 :Iz W H R . ‘ [ 8 10 B - #

FIGURE X.1 — CONVERGENCE DE LA LOI BINOMIALE VERS LA LOI DE POISSON

Preuve —
_ _ n! k n—k
P(Xn=k) = mpn(l—Pn)
nk 1 2 - k=1 _
o LR R R R P R PGP
k! n n n
— 1
n— oo

Or (npn)* el Ak et la forme indéterminée (1 — pn)™~F s'écrit e(n—k) In(1=pn),

86



X.5. ESPERANCE

Orn—k ~ netln(l—py) ~— p car pp — 0. Dot (n — k)ln(1—pn) ~ —npn —> —A Donc
n—oo n—oo n— oo n—oo n—oo
)\k
_ a2
P(Xn=k) — o O
REMARQUE 16 — L’expérience montre que la loi de Poisson est suivie par de mombreuses variables

aléatoires telles que :

— le nombre d’appels recus par un standard téléphonique pendant une durée T ;

— le nombre de connexions a un serveur web pendant une durée T ;

— le nombre de clients qui passent a la caisse d’un magasin pendant une durée T ;

— le nombre d’atomes qui se désintégrent dans un échantillon radioactif pendant une durée T.

On peut comprendre pourquot grace au modéle suivant : on découpe un intervalle de temps de durée
T en un nombre n d’intervalles de durée At = % et on suppose que la probabilité p, de réalisation d’un
événement pendant la durée At est proportionnelle ¢ la durée At : p, = AAt = /\%, ot le parametre A > 0

est donc la probabilité de réalisation d’un événement par unité de temps.

On fait Uhypothese que les événements sont des événements rares : si n est assez grand, alors
l’événement se réalise au plus une fois pendant la petite durée At = % Autrement dil : cet événement,
qui se réalise (succeés) ou pas (échec), est une éprewve de Bernoulli.

Si (deuzieme hypothése) les événements sont indépendants (par exemple : pas de réaction en chaine
dans Uéchantillon radioactif), alors l’expérience aléatoire est équivalente a la répétition de n épreuves de
Bernoulli indépendantes. La probabilité de succes pendant une épreuve est p, et la loi de probabilité est
une loi binomiale B(n, p,).

X.5 ESPERANCE

DEFINITION 17
Soient (2,27, P) un espace probabilisé et X une variable aléatoire réelle discrete (vard) telle que X (Q2) =
{a;, i € It CR. Sila série > a;P(X = a;) converge absolument, alors :

(i) on dit que X est d’espérance finie ou que X posséde une espérance ou que X € L!;

(ii) cette espérance, notée E(X), est le nombre réel E(X) = ZaiP(X = q;).
iel

Si la vard X mesure le gain d’un joueur, alors ’espérance est la somme que ce joueur peut « espérer »
gagner.

REMARQUE 18 —

1. Dans la définition de l’espérance, on veut que la valeur de l’espérance ne dépende pas de l'ordre dans
lequel on indexe les valeurs a; afin de les sommer. C’est le cas si la série converge absolument.

2. Une vard peut ne pas étre d’espérance finie :

6 o0
st Vn € N*, p, = R alors an =1 et la série Y np, diverge.

n=1

3. Si X(Q) est fini, alors la variable aléatoire X est nécessairement d’espérance finie car E(X) est
alors une somme finie.

4. Sila vard X est bornée, alors elle est nécessairement d’espérance finie.

Preuve — Soit M un majorant de la suite des |an|. Pour tout n € I, lanP(X = an)| < MP(X = ap).
Or la série >, MP(X = an) = M Y P(X = an) converge (vers M ).

Donc la série Y anP(X = apn) converge absolument. O
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5. L’espérance est linéaire : si une vard X est d’espérance finie, alors aX + B aussi et

|E(aX—|—ﬁ):aE(X)+ﬁ|

pour tous a € R et f € R.

Preuve — Notons an la suite des valeurs prises par la vad X. Par hypothése, la série Y lan P(X = an)| converge.

Orvn € N, 0 < |aan + 8| < |a] - |an| + |B] et les séries > |a| - |an|P(X = an) = |a| Y |an|P(X = an) et

SIBIP(X = an) = |B] > P(X = an) convergent, d’ot la série Y (aan + B) P(X = an) converge absolument. De
oo oo o0

plus > (aan +B) P(X =an) =a Y anP(X =an) + 8 Y P(X =an) = ali(X) + 8. O

n=0 n=0 n=0
6. Si X est d’espérance finie, alors |X| aussi et |E(X)| < E (|X|) par Uinégalité triangulaire.
7. L’espérance est croissante : soient X et Y deux va d’espérances finies.

Si X <Y (ie siVweQ, X(w) <Y(w)), alors E(X) < E(Y).
EXERCICE 19 — Montrer que :
1. si X ~ B(n,p), alors X est d’espérance finie et E(X) =n-p.
. . n n—1
On pourra utiliser la petite formule : Vk e N*, Vn >k, k (kz) =n (k: _ 1) .

2. siT ~ G(p), alors T est d’espérance finie et E(T) =

s =

3. st X ~P(N), alors X est d’espérance finie et E(X) = \.

ProrosITION 20
Soient (€2, .27, P) un espace probabilisé et X une vad telle que X(Q) C N :

X est d'espérance finie si, et seulement si, la série Z P(X > n) converge. Et alors

E(X) = f:P(X >n) = iP(X > n).
n=0

n=1

Preuve —

n n
— Soient, pour chaque n € N, S, = Z kP(X =k) et T, = Z P(X > k). Montrons par récurrence que :
k=0 k=0

vneN*, S, =Th,_1—nP(X >n). (%)
C’est vrai pourn =1car S =P(X =1)=P(X >0) - P(X >1)=Tp — P(X > 1).
Supposons la propriété (*) vraie pour n. Alors elle est vraie pour n + 1 car
Sn+1=Sn+(n+1H)PX=n+1) = Th,_1—-nPX>n)+n+1)P(X=n+1)
= Th—-—(n+1)P(X>n)+(n+1)P(X =n+1)
T —(n+1)P(X >n+1).

Donc la propriété (x) est vraie pour tout n € N*.
— Les suites (Sp) et (T)) sont croissantes. D’apres (x), Sp < Tp—1, d’ou :

(T ) converge = (Sp) converge —> X est d’espérance finie.

oo
— Réciproquement : si X est d’espérance finie, alors (Sn) converge, d’ot Z kP(X =k)=FE(X)— Sn 7 0.
k=n+1 nmree
oo oo
Daprés (x), Tn—1=Sp+nP(X >n). OrnP(X >n)=n Y  P(X=k) < > kP(X=k)<E(X)-S,. Do
k=n+1 k=n+1

oo
nP(X >n) — 0. Donc (Th,—1) converge et lim Tp_1 = lim S,. Donc E(X) = Z P(X >mn).
n—o0 n—oo n—o0

n=0
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EXERCICE 21 — Soit X une variable aléatoire discréte a valeurs réelles positives et d’espérance finie.
Montrer que la va | X | est d’espérance finie et que

i P(X >n) < B(X ZPX>n

REMARQUE 22 — Si X est une vard et ¢ est une fonction de X (Q) vers R, alors :

1. ¢ o X est aussi une vard, notée p(X);
2. soit po X(Q) = {b;, j € J}. Si p(X) posséde une espérance E (p(X)), alors cette espérance est
égale a ijP(go(X) = b;) (c’est la définition de l’espérance) mais aussi Zap(ai)P(X = a;)
jed iel
(c’est le théoréme suivant, que nous admettons).

THEOREME 23 (théoréme de transfert)
Soient (€2, .27, P) un espace probabilisé, X une vard et ¢ une fonction de X () = {a;, i € I} vers R :

(X)) est d'espérance finie si, et seulement si, la série >~ ¢(a;)P(X = a;) converge absolument. Et alors
E(¢o(X)) est égale a la somme Zg@(ai)P(X = a;) de cette série.
icl

X.6 VARIANCE ET ECART-TYPE

DEFINITION 24
Soient (€2, %7, P) un espace probabilisé et X une vard : X(Q) = {a;, i € I}. Soit k € N. Si la série
> a¥P(X = a;) converge absolument, alors on dit que X posséde un moment d’ordre k et que ce moment
d'ordre k est le nombre réel

> afP(X =

el

Autrement dit (en utilisant le théoréme de transfert) : X possede un moment d’ordre k si, et seulement
si, X* est d’espérance finie. Et alors ce moment d’ordre k est E(XF¥).

LEMME 25
Si une vard possede un moment d'ordre k£ + 1, alors elle possede aussi un moment d'ordre k.

Preuve — Pour tout réel x > 0, 2* < 2*+! + 1 (distinguer deux cas : @ > 1 et x < 1).

Dot |afP(X = a;)| < |a’.“+1P(X =a;)| + P(X = a;) pour tout ¢ € I. La série ), P(X = a;) converge (vers 1).

Donc : si la série Y |ak+1P(X = a;)| converge, alors la série 3_ |a¥ P(X = a;)| converge aussi. O

PROPOSITION-DEFINITION 26
Soient (€2, 47, P) un espace probabilisé et X une vard. Si X? est d'espérance finie, alors X aussi et on
appelle variance de X le réel positif

V(X) = B (IX - BX)I*) = B(X?) - [B(XO).

L'écart-type o(X) est la racine carrée de la variance : ¢(X) = \/V(X).
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CHAPITRE X. VARIABLES ALEATOIRES

Preuve — D’aprés le lemme, X est d’espérance finie. Soit p = E(X). Pour tout i € I, [a; — p]? = a? — 2pa; + p2. Or les
séries Y- a?P(X = a;), Y(—2pa;)P(X = a;) = —2p>" a; P(X = a;) et > p?P(X = a;) = u2 3. P(X = a;) convergent, donc
la variance est bien définie.

En outre :
V(X)= Z (ai —)?*P(X =a;) = Za?P(X =a;) — QMZaiP(X =a;) + p? ZP(X =a;) = B(X?) —2p% + 12
i€l i€l il il

O

REMARQUE 27 —
1. La variance mesure la dispersion ou l'étalement des valeurs a; autour de lespérance E(X). En
particulier, si 3a € R, P(X =a) =1, alors E(X) =a et V(X) =0.

2. Si la variable X a une unité (km/s, V/m, etc), alors ’écart-type a la méme unité (d’ou lintérét de
calculer la racine carrée de la variance).

3. Soient deuz réels v et 3. Si X2 est d’espérance finie, alors aX + 3 aussi et

[V(aX +5) = a?V(X). |

EXERCICE 28 — Montrer que :
1. si X ~ B(n,p), alors X? est d’espérance finic et V(X)=n-p-q.
2. i T ~ G(p), alors T? est d’espérance finie et V(T') = %

p
3. si X ~P(N), alors X? est d’espérance finie et V(X) = \.

X.7 LES INEGALITES DE MARKOV ET DE BIENAYME-TCHEBYCHEV

Ces inégalités sont des inégalités de concentration. Elle mesurent la probabilité qu'une variable aléatoire
X soit concentrée autour d’une valeur : 0 dans le cas de I'inégalité de Markov, E(X) dans le cas de
I'inégalité de Bienaymé-Tchebychev.

LEMME 29 (Markov)
Soient (Q, .27, P) un espace probabilisé et X une vard. Si X est positive et d'espérance finie, alors :

EX)

Va>0, P(Xza)<=

Preuve — Soient (an)ner les valeurs prises par la variable aléatoire X : lespérance vaut p = Z anP(X = an). Soit

neN
J={nel|lan>a}:p> Z anP(X = ap) car J C I et les ayn sont positifs. D’olt
neJ
uZZaP(X:an):aZP(X:an):aP(Xza), O
neJ neJ

PROPOSITION 30 (Bienaymé-Tchebychev)
Soient (£2,.97, P) un espace probabilisé et X une vard. Si X? est d'espérance finie, alors

409

Ya > 0, P(X - E(X)|>a) < —5

a

Preuve — X2 est d’espérance finie, d’ot1 la variance V(X) = o2 et espérance E(X) = u sont définies. La variable aléatoire

2
Y = (X — m)? est positive et son espérance est E(Y) = 2. D’apres 'inégalité de Markov, P(Y > a?) < %. Or les
a
2
événements Y > a? et | X — u| > a sont égaux. Donc P(|X —m| > a) < 0—2. O
a
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X.8 SERIE GENERATRICE

DEFINITION 31
Soit X une variable aléatoire discrete telle que X (2) C N. La série génératrice de X est la série entiére

an -t de coefficients p,, = P(X =n).

o0
La série Y p, converge car sa somme vaut Z pn =1, dou:
n=0
(i) le rayon de convergence R de la série génératrice est supérieur ou égal a 1;
(ii) la fonction génératrice est définie sur | — R, +R|[ et peut-étre aux bords de cet intervalle par

Gx : tm Gx(t) =Y put" = E (t¥)
n=0

(iii) la série génératrice converge normalement sur [—1,+1], d’oti la fonction génératrice Gx : t — Gx(t)
est définie et méme continue sur [—1,+1] au moins;
(iv) la fonction Gx est de classe C* sur | — 1,41[ au moins et

G (0)

VkeN, P(X=k)= 20

La fonction génératrice de X permet donc de retrouver la loi de probabilité de X.

Elle permet aussi de calculer 'espérance et la variance de X. Si R > 1, alors 1 €] — R, +R][, d’ou :

o0 o0
G'(1) = Z np, et G"(1) = Z n(n — 1)p, car on peut dériver terme & terme une série enticre sans
n=1 n=2

changer son rayon de convergence. On en déduit que X? est d’espérance finie et :
B(X)=Gx(1) et  V(X)=Gx(1)+Gx(1) - [Gx)).

La proposition suivante ne dit rien d’autre quand R > 1 et en dit plus quand R = 1.

PROPOSITION 32
Soient X une variable aléatoire discrete telle que X (Q2) C N et Gx sa fonction génératrice.

1. X est d'espérance finie si, et seulement si, la fonction Gx est dérivable en 1. Et alors
E(X) =G (1).
2. X? est d'espérance finie si, et seulement si, la fonction G x est deux fois dérivable en 1. Et alors

V(X) = G% (1) + Gy (1) — [Gx (1))

Preuve —

o o]
1. La fonction G x est continue sur [—1, +1], de classe C! sur]—1, +1[ et Vt €]—1, +1[, G (t) = Z npnt™ 1. Sila variable

n=1
o0
aléatoire X posséde une espérance E(X) = Z npn, alors la série de fonctions > np,t™~! converge normalement sur
=0
oo n
[-1,+41], donc la fonction ¢ +— Z npnt™ 1 est continue sur [—1,+1], d’ou G'x (t) possede une limite quand ¢ tend
n=1

oo
vers 1. Donc (théoréme de la limite de la dérivée) Gx est dérivable en 1 et G’y (1) = thml G (t) = Z npn = E(X).
—
n=1
Nous admettons la réciproque.
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2. Si la variable aléatoire X possede un moment d’ordre 2, alors elle possede aussi un moment d’ordre 1, d’ou la fonction

G’y est continue sur [—1, +1]. La série > n?p, converge (car la variable aléatoire X posséde un moment d’ordre 2), d’ott
oo

la série de fonctions Y n(n — 1)p,t™~2 converge normalement sur [—1,+1], donc la fonction ¢ +— Z n(n — 1)ppt™ 2
- n=2
est continue sur [—1,+1]. Or V¢ €] — 1, +1[,G% (t) = Z n(n — )pnt" "2, d’ott G’ (t) possede une limite quand ¢
n=2
tend vers 1. D’oul (théoreéme de la limite de la dérivée) Gy est dérivable en 1 et
oo oo oo
. 2
G () =lim G% (1) = D n(n—Dpn = Y _n’pn = Y npn = B(X?) = BE(X) = V(X) + [E(X)]* — B(X).

n=0 n=0 n=0

Donc V(X) = G% (1) + G’ (1) — [G"X(lﬂ2 . Nous admettons la réciproque. O

EXERCICE 33 — Soient p €]0,1[, g =1—p et A > 0. Soit X une variable aléatoire. Montrer que :
1. si X ~ B(n,p), alors
VteR, Gx(t)=(pt+q";

2. siT ~ G(p), alors

1 1 pt
Vie |- 4=|, Grt)= -2,

3. st X ~P(N), alors
VteR, Gx(t)=e - eM.

En déduire ’espérance et la variance de chacune de ces vard.

T = temps d’attente du 1°" succes lors d’une suite
d’épreuves de Bernoulli indépendantes

/o P(T=k)=p-¢"', VkeT(Q) =N

%{\o}@ B(T) = V(T) =k
(4
. (50'60‘0 Q\Q\ X = # succes parmi n épreuves de Bernoulli
NS 1
indépendantes
p = proba d’un succes €]0,1] o .
_ - , [ ] loi binomiale o) oy (Y k. ok _
q =1 — p = proba d’un échec \XNB(n,p) P(X =k)= <k> p¥ g™ ", Yk e X(Q) =[0,n]
&y — . \ =n-p-
T, BE(X)=n-p V. VX)=n-pq
A 50 {p — 0
2D Ss, nop—
(’U 2 \ 2 ’
o AF
P(X:k):e"\-g, Vke X(Q) =N
X = # succes rares pendant une durée fixée
E(X)=\ V(X)=2A

FI1GURE X.2 — TROIS LOIS DE PROBABILITE CLASSIQUES
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