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Exercice

1) Soit x ∈ R. Le réel f(x) est défini si, et seulement si, la série
∑
n⩾0

e−x
√
n converge.

Si x ⩽ 0, alors e−x
√
n ⩾ 1 pour tout n ∈ N, d’où la suite e−x

√
n ne tend pas vers 0, donc la série diverge

grossièrement.

Si x > 0, alors n2e−x
√
n =

√
n
4
e−x

√
n −→

n→∞
0 par croissances comparées, donc :

e−x
√
n = o

n→∞

(
1

n2

)
.

Or
1

n2
ne change pas de signe et la série de Riemann

∑
n⩾1

1

n2
converge, donc la série

∑
n⩾0

e−x
√
n converge.

En conclusion, l’ensemble de définition de la fonction f est D =]0,+∞[.

2) Soit a > 0. La série de fonctions
∑
n⩾0

fn converge uniformément car normalement sur ]0, a]. En effet, pour

tout n ∈ N et tout x ≤ a, |fn(x)| = e−x
√
n ⩽ e−a

√
n et la série

∑
n⩾0

e−a
√
n converge d’après la première

question car a ∈ D. De plus, chaque fonction fn est continue sur ]0, a], d’où la fonction f est continue
sur ]0, a]. Ceci est vrai pour tout a > 0, donc la fonction f est continue sur D.

3) Comme prouvé à la question précédente, la série de fonctions
∑
n⩾0

fn converge uniformément sur [42,+∞[.

De plus

∀n ∈ N, lim
x→+∞

fn(x) =

{
1 si n = 0,
0 si n ⩾ 1.

Donc, d’après le théorème de la double limite :

lim
x→+∞

f(x) =

∞∑
n=0

lim
x→+∞

fn(x) = 1.

4) Soient x > 0 et N ∈ N. L’intégrale est impropre en +∞. Après le changement de variable u =
√
t, qui

est strictement monotone et de classe C1 sur ]0,+∞[, avec du = dt
2
√
t
, l’intégrale devient impropre en 0

et en +∞, sa nature ne change pas et, sous réserve de converger,∫ +∞

0

e−x
√
tdt =

∫ +∞

0

2
√
te−x

√
t dt

2
√
t
=

∫ +∞

0

2ue−xudu.

Puis on intègre par parties : les fonctions u 7→ e−xu

−x et u 7→ u sont de classe C1 sur ]0,+∞[ et

lim
u→0

ue−xu

−x = 0 et lim
u→+∞

ue−xu

−x = 0, d’où la nature de l’intégrale ne change pas et

∫ +∞

0

ue−xudu =

[
ue−xu

−x

]+∞

0

−
∫ +∞

0

e−xu

−x
du =

1

x

[
e−xu

−x

]+∞

0

=
1

x2
.



Donc l’intégrale converge et vaut
2

x2
.

5) Soit x > 0. L’intégrande t 7→ e−x
√
t est une fonction continue et décroissante, d’où∫ N+1

0

e−x
√
tdt ⩽

N∑
n=0

e−x
√
n ⩽ 1 +

∫ N

0

e−x
√
tdt

en comparant série et intégrale. Les inégalités larges passent à la limite N → ∞ (car série et intégrales
convergent d’après les questions précédentes), d’où

∀x > 0,
2

x2
⩽ f(x) ⩽ 1 +

2

x2
,

d’où lim
x→0

f(x)
2
x2

= 1 d’après le théorème des gendarmes, donc f(x) ∼
x→0

2

x2
.

Problème 1

1) detG(u, v) =

∣∣∣∣< u|u > < u|v >
< v|u > < v|v >

∣∣∣∣ = ∥u∥2 · ∥v∥2 − (< u|v >)2 est supérieur ou égal à zéro car, d’après

l’inégalité de Cauchy-Schwarz
| < u|v > | ≤ ∥u∥ · ∥v∥.

Cette inégalité est une égalité si, et seulement si, les deux vecteurs sont colinéaires. Donc detG(u, v) > 0
si, et seulement si, la famille (u, v) est libre.

2) a) Notons M = G(v1, v2, · · · , vn) :

mij =< vi|vj >=<

n∑
p=1

apiep|
n∑

q=1

aqjeq >=

n∑
p=1

n∑
q=1

apiaqj < ep|eq >=

n∑
p=1

apiapj car < ep|eq >=

δpq. Donc M = AT ·A.

b) detG(v1, v2, · · · , vn) = det(ATA) = detAT · detA = (detA)2 est positif.

c) Soit un vecteur-colonne X :

– si X ∈ Ker(A), alors AX = 0, d’où ATAX = AT 0 = 0, d’où X ∈ Ker(ATA), donc Ker(A) ⊂
Ker(ATA) ;

– siX ∈ Ker(AT ·A), alors ATAX = 0, d’où ∥AX∥2 = XTATAX = XT 0 = 0, d’où (AX)T (AX) = 0,
d’où AX = 0, d’où X ∈ Ker(A), donc Ker(AT ·A) ⊂ Ker(A).

De l’égalité des noyaux Ker(AT · A) = Ker(A) et du théorème du rang, on déduit que les matrices
A et G(v1, v2, · · · , vn) = AT ·A ont le même rang.

d) La matrice A est la matrice des coordonnées de la famille de vecteurs (v1, v2, · · · , vn) dans la base
(e1, · · · en). Son rang est donc égal à la dimension de Vect(v1, v2, · · · , vn).

3) a) G(v1, v2, · · · , vn, z) =


< v1|z >

G(v1, · · · , vn)
...

< vn|z >
< z|v1 > · · · < z|vn > < z|z >



=


0

G(v1, · · · , vn)
...
0

0 · · · 0 ∥z∥2

,

donc detG(v1, · · · , vn, z) = ∥z∥2 · detG(v1, · · · , vn).



b)

detG(v1, v2, · · · , vn, y + z)

=

∣∣∣∣∣∣∣∣∣
< v1|y + z >

G(v1, · · · , vn)
...

< vn|y + z >
< y + z|v1 > · · · < y + z|vn > < y + z|y + z >

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
< v1|y >

G(v1, · · · , vn)
...

< vn|y >
< y|v1 > · · · < y|vn > ∥y∥2 + ∥z∥2

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
< v1|y >

G(v1, · · · , vn)
...

< vn|y >
< y|v1 > · · · < y|vn > ∥y∥2

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣
0

G(v1, · · · , vn)
...
0

< y|v1 > · · · < y|vn > ∥z∥2

∣∣∣∣∣∣∣∣∣
=detG(v1, · · · , vn, y) + ∥z∥2 · detG(v1, · · · , vn).

Or la famille (v1, · · · , vn, y) est liée, d’où detG(v1, · · · , vn, y) = 0, donc

detG(v1, · · · , vn, y + z) = ∥z∥2 · detG(v1, · · · , vn).

c) x = y + z, où y = p(x) ∈ F et z = x− p(x) ∈ F⊥, d’où d(x, F ) = ∥z∥ =
√

∥z∥2.

Or detG(v1, · · · , vn, x) = ∥z∥2 · detG(v1, · · · , vn) d’après (3b) et detG(v1, · · · , vn) ̸= 0 car la

famille (v1, · · · , vn) est libre. Donc ∥z∥ =

√
detG(v1, v2, · · · , vn, x)
detG(v1, v2, · · · , vn)

.

4) a) < Xi|Xj >=

∫ 1

0

ti · tj dt = 1

i+ j + 1
, d’où Hn = G(1,X, · · · ,Xn−1). D’où le rang de la matrice

Hn est égal à la dimension de Vect(1, X, · · · , Xn−1). Or la famille de polynômes (1, X, · · · , Xn−1)
est libre. D’où rgHn = n, donc Hn est inversible.

b) f(a0, a1, · · · , an−1) =

∫ 1

0

(
tn − a0 − a1t− · · · − an−1t

n−1
)2

dt = ∥Xn−(a0+a1X+· · ·+an−1X
n−1)∥2

possède un minimum égal à ∥Xn−p(Xn)∥2 = [d(Xn,Rn−1[X])]
2
, où p est la projection orthogonale

de l’espace vectoriel E = R[X] sur le sous-espace vectoriel F = Rn−1[X].

Donc d(Xn,Rn−1[X]) =

√
detG(1, · · · , Xn−1, Xn)

detG(1, · · · , Xn−1)
=

√
detHn+1

detHn
.

Problème 2

0) La matrice J est de rang 1 car ses colonnes ne sont pas toutes nulles et sont toutes colinéaires à la
colonne (1 1 · · · 1)T . D’une part, le vecteur (1 1 · · · 1)T est un vecteur propre associé à la valeur propre
n. D’autre part, dimKer(J) = n− rg(J) = n− 1 d’après le théorème du rang. Or le noyau est aussi
le sous-espace propre associé à la valeur propre 0. En complétant une base du noyau avec le vecteur



(1 1 · · · 1)T , on obtient une base formée de vecteurs propres de la matrice J , qui est donc diagonalisable.
Et semblable à diag(0, · · · , 0, n), donc Sp(J) = {0;n}.

1) Supposons que K = uvT et que les vecteurs u et v ne sont pas nuls. Pour tout x ∈ Rn, Kx =
uvTx = ⟨v, x⟩u, d’où Im(K) ⊂ Vect(u). Ou bien le sev Im(K) est {0}, ou bien c’est Vect(u). Or
Kv = uvT v = ⟨v, v⟩u ̸= 0 car u ̸= 0 et v ̸= 0. Donc Im(K) = Vect(u) et rg(K) = dim Im(K) = 1.

Réciproquement, soit K une matrice de rang 1. Il existe alors un vecteur u ̸= 0 tel que chaque colonne
Kj de K est un multiple de u. Pour chaque j ∈ J1, nK, posons vj ∈ R de sorte que Kj = vju. En notant
v = (v1 · · · vn)

T , il vient que v ̸= 0 (car M ̸= 0 car M est de rang 1) et que K = uvT .

Enfin, x ∈ Ker(K) ⇐⇒ uvTx = 0 ⇐⇒ vTx = 0 car u ̸= 0. Donc Ker(K) = [Vect(v)]
⊥
.

2) Supposons que uvT = xyT . Comme Im(uvT ) = Vect(u) et Im(xyT ) = Vect(x) d’après la question 1, il
existe λ ̸= 0 tel que u = λx. En raisonnant de même avec les matrices transposées, il existe µ ̸= 0 tel
que y = µv. Alors uvT = µ

λuv
T , d’où µ = λ et finalement u = λx et y = λv. La réciproque est claire.

3) (a) Tr(K) =
∑n

i=1 uivi = ⟨u, v⟩ car Kij = (uivj)1≤i,j≤n.

(b) K2 = uvTuvT = u⟨v, u⟩vT = ⟨u, v⟩uvT = Tr(K)K.

(c) Si Tr(K) ̸= 0, alors le polynôme scindé à racines simples X(X − Tr(K)) annule la matrice K, qui
est donc diagonalisable. Réciproquement, si Tr(K) = 0, alors K2 = 0, d’où X2 est un polynôme
annulateur de la matrice K, d’où le spectre de M est inclus dans l’ensemble des racines de X2. Par
l’absurde : si K est diagonalisable, alors K est semblable à la matrice nulle, d’où K = 0, ce qui
contredit le rang égal à 1.

4) Supposons que P = yyT et que ||y|| = 1. Alors P est de rang 1 d’après la question 1 car y ̸= 0.
P 2 = yyT yyT = ||y||2P = P , donc P est projecteur. De plus, noyau et image de P sont des sev

orthogonaux car Im(P ) = Vect(y) et Ker(P ) = [Vect(y)]
⊥

d’après la question 1.

Réciproquement, supposons que P est une projection orthogonale de rang 1. On écrit P = uvT grâce à la
question 1. De plus, les image Im(P ) = Vect(u) et noyau Ker(P ) = [Vect(v)]

⊥
sont des sev orthogonaux,

d’où ∃λ ̸= 0, u = λv. Alors P = λvvT . Comme P est un projecteur de rang 1, Tr(P ) = 1 = λ||v||2. On
en déduit que λ = 1/||v||2 et on peut ainsi écrire P = wwT où le vecteur w = v

||v|| est de norme 1.

5) En calculant le produit matriciel par blocs :(
In 0
vT 1

)(
In + uvT u

0 1

)(
In 0
−vT 1

)
=

(
In + uvT u

(1 + ⟨u, v⟩)vT 1 + ⟨u, v⟩

)(
In 0
−vT 1

)
=

(
In + uvT − uvT u

(1 + ⟨u, v⟩)vT − (1 + ⟨u, v⟩)vT 1 + ⟨u, v⟩

)
=

(
In u
0 1 + ⟨u, v⟩

)
puis il vient que 1 × det(In + uvT ) × 1 = 1 + ⟨u, v⟩ en égalisant les déterminants, qui sont bien
triangulaires par blocs. Donc det(In + uvT ) = 1+ ⟨v, u⟩. La matrice A étant inversible, on en déduit que
det(A+ uvT ) = det(A(In +A−1uvT )). Donc det(A+ uvT ) = det(A)(1 + ⟨v,A−1u⟩).

Enfin, det(A) ̸= 0, d’où A+ uvT ∈ GLn(R) si et seulement si 1 + ⟨v,A−1u⟩ ̸= 0, ce qui est équivalent à
⟨v,A−1u⟩ ̸= −1.

6) Calculons le produit :(
A−1 − A−1uvTA−1

1 + ⟨v,A−1u⟩

)
(A+ uvT ) = In +A−1uvT − A−1uvTA−1A+A−1uvTA−1uvT

1 + ⟨v,A−1u⟩

= In +A−1uvT − A−1uvT +A−1u⟨v,A−1u⟩vT

1 + ⟨v,A−1u⟩
= In +A−1uvT − (1 + ⟨v,A−1u⟩)A−1uvT

1 + ⟨v,A−1u⟩
= In

Donc (A+ uvT )−1 = A−1 − A−1uvTA−1

1 + ⟨v,A−1u⟩
.

7) Soit u un vecteur de norme 1. Alors P = uuT est la projection orthogonale sur Vect(u) d’après la

question 4. D’où Q = In − P est la projection orthogonale sur [Vect(u)]
⊥
. La matrice Q n’est donc pas

inversible, d’où det(Q) = 0. Mais det(Q+ uuT ) = det(Q+ P ) = det(In) = 1 ̸= 0.


