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Exercice 1. 1. Une variable aléatoire X & valeurs dans N suit une loi de probabilité vérifiant la relation

4
n+1

VneN, P(X=n+1) = P(X =n).

Déterminer la loi de probabilité de X, c’est-a-dire calculer P(X = n) pour tout n € N.
2. Soient un réel p €]0, 1] et une variable aléatoire X & valeurs dans N* telle que, pour tout n € N* :

P(X=n)=p-P(X >n).

Quelle est cette loi de probabilité ?

1. Par récurrence, pour tout n € N,

47l
P(X =n)=P(X =0)—.
n!
+oo 4n
En utilisant le fait que g P(X =0)— =1 on obtient
n!
n=0
471
P(X=n)=e*—
n!

Donc X suit une loi de Poisson de parametre 4.
2. Pour tout n € N*,

P(X=n)-P(X=n+1)=p-P(X>n)—p-P(X>n+1)=p- P(X =n)
car (X >n)= (X =n)U (X >n+1) et cette union est disjointe. On en déduit la relation
P(X=n+1)=(1-p)P(X =n)
qui permet de démontrer par récurrence que : P(X =n) = (1 —p)" 1 P(X = 1).

o]

Pour déterminer P(X = 1), on remarque que U (X =n) est une union certaine et disjointe, d’ou :
n=1
- 1
1= 1-p)" 'P(X=1)=—F—P(X=1).
; 1-(1-p)

Donc
Vn eN*, P(X =n)=(1-p)" Ip

La variable aléatoire X suit une loi géométrique de parametre p.

Autre méthode : ’hypothese P(X =n) =p- P(X > n) implique, pour n =1, que P(X =1) =p- P(X >1). Or (X > 1)
est I’événement certain, d’out P(X > 1) =1, donc P(X = 1) = p et on conclut comme ci-dessus.

Exercice 2 (Loi de Poisson). Soit X une variable aléatoire qui suit une loi de Poisson de parameétre \.
1. Exprimer I'événement « X prend une valeur paire » comme une union disjointe. De méme pour
I'événement « X prend une valeur impaire ».

2. Calculer la probabilité que la valeur de X soit paire et calculer la probabilité que la valeur de X soit
impaire. Comparer ces deux probabilités.



Soit n un entier naturel tel que n + 1 > A. Montrer que :

4. En déduire que : P(X >n) ~ P(X =n).
n—oo
5. Montrer que : P(X >n)= o (P(X =n)).
n—oo
1. L’événement « X prend une valeur paire » est U (X = 2k) tandis que ’événement « X prend une valeur impaire » est

keN
U (X =2k +1) et ces unions sont disjointes.

keN
n

A
La variable aléatoire X suit une loi de Poisson de paramétre A, d’ott X(Q) =NetVn €N, P(X =n) =e > —- La
n!
probabilité que la valeur de X soit :

oo
— paire est Z P(X =2k) =e > ch()\);
k=0

oo
— impaire est Z P(X =2k+1) =e > -sh(})
k=0
d’apres la question précédente. La valeur de X a plus de chances d’étre paire qu’impaire car

+A - H+A A
VA ER, chk:%>sh/\:e 2e

Soit n un entier naturel tel que n 4+ 1 > A. L’événement (X > k) est égal & U (X = k) et cette union est disjointe, d’ou :
k>n

P(X >n) ip(x bRy =e. i Al
n)= =n = - —_ R —
- = n! = (n+ k)!

PR P PN
Or,pourtout ke N, 0 < —— < [ —— et la série géométrique converge car n + 1 > A. Sa somme
P —(n+M!—(n+1) & 4 §:(n+1> vers
n

L .Y
est ————. Donc P(X >n)<e "+ —  ————.
n+1 n+1
Pour chaque n € N, (X = n) C (X > n), dout P(X = n) < P(X > n) par croissance de la probabilité. Par suite,
P(X =n) < P(X <n) < P(X =n)-

+— d’apres la question précédente. On divise par P(X = n) qui n’est pas nul

n+1

P(X >
PX =n) — 1. Donc P(X >n) ~ P(X =n).
P(X = n) n— oo n— oo

(X >n) = (X >n)U (X =n) et cette union est disjointe, d’olt

et, d’apres le théoreme des gendarmes,

P(X >n)=P(X >n)+ P(X =n),
donc P(X >n) = P(X >n) — P(X =n).
Or P(X >n) ~ P(X =n), dott P(X >n) = P(X =n)- (1 +en).
Dot P(X >n)=P(X =n)-(1+en) — P(X =n) = P(X =n) - en.
Done P(X >n) = o (P(X=n)).

Exercice 3 (Loi géométrique & continuité décroissante). Deux joueurs A et B lancent & tour de réle une piece
de monnaie qui tombe sur pile avec la probabilité p €]0, 1[. Le premier qui obtient pile gagne le jeu. C’est A
qui commence a jouer.

1.

Quelle est la probabilité que A gagne ? Quelle est la probabilité que B gagne? L’un des deux joueurs
a-t-il plus de chances de gagner que 'autre ?

Calculer (de deux manieres ?) la probabilité que le jeu ne s’arréte pas. Au quantieme lancer peut-on
espérer avoir un gagnant 7



1. Soit T le temps d’attente du premier pile. La variable aléatoire T' suit une loi géométrique de parameétre p car les lancers
forment une suite d’épreuves de Bernoulli indépendantes :

vk € N¥| P(T:k;):qk*l-p7 oilg=1-p

e [’événement A, «le joueur A gagne & son m-iéme lancer » est égal & (T'= 2n — 1) car le joueur A commence puis
joue une fois sur deux. D’out
VneN*, P(Ay,)=¢""2.p

L’événement « le joueur A gagne » est égal & |J;2; Ay et cette union est disjointe, donc la probabilité que le joueur

A gagne est
D PA) =) " p=p- > ()" = e
n=1 n=1 n=0

e [’événement B, « le joueur B gagne & son n-iéme lancer » est égal & (T' = 2n) car le joueur A commence puis B
joue une fois sur deux. D’ou
Vn € N*, P(Bp)=¢*>""1.p.

L’événement « le joueur B gagne » est égal a |J,—; Bn et cette union est disjointe, donc la probabilité que le joueur
B gagne est
SDTPB) =Y ¢ p=pg- Y ()" = T—Z =5
n=1 n=1 n=0 —-4q -P
e Le joueur A a plus de chances de gagner que le joueur B car
1 1—-p
2—p 2—p
2. L’événement « le jeu ne s’arréte pas » est le contraire de AUB. Or cette union est disjointe, d’ott P(AUB) = P(A)+P(B) =
1 1-—
By 2717 = 1. Donc la probabilité que le jeu ne s’arréte pas est nulle. Cet événement est donc presque impossible.
—-D —-p

Autre méthode : 'événement « le jeu ne s’arréte pas » est égal & « la pidce tombe toujours sur face », donc égal & (72, Fn,
ol F), est I’événement « la piece tombe les n premieres fois sur face ». Or la suite (F,) est décroissante car Fy,+1 C Fj,.
D’otr (théoreme de la continuité décroissante) : P((\;2; Fn) = lim P(F,) =0 car P(Fn) = ¢" et |q| < 1.

- n—oo

La variable aléatoire T suit la loi G(p), elle possede donc une espérance finie et E(T') = %.

Exercice 4 (Loi binomiale, espérance & variance). Un marcheur se déplace sur une droite en faisant un pas
vers la droite avec une probabilité p €]0, 1] ou vers la gauche avec la probabilité ¢ = 1 — p. Pour chaque n € N*,
on note X,, sa position apres n pas et D, le nombre de pas vers la droite parmi ces n pas.

Calculer la loi de probabilité, 'espérance et la variance de la variable aléatoire D,,. En déduire I'espérance
et la variance de la variable aléatoire X,,.

Les n pas sont des épreuves de Bernoulli, qu’on suppose indépendantes. La variable aléatoire Dy, suit la loi binomiale B(n, p), d’out

Dn() = [0,1]
vk € [0.n], P(Dn =) = ({)pka" "
E(Dn) =np

V(Dn) = npq

Or X, = Dy, — (n — Dp) = 2Dy, — n est la position apres Dy, pas vers la droite et n — Dy, pas vers la gauche. D’ou

Xn(Q) C [-n,+n]

Vk € [-n,+n], P(Xn =k) = P (Dn - "Tﬂ“’“)
E(Xn)=E@2D, —n)=2E(Dy)—n=2np—n
V(Xn) = V(2Dy — n) = 4V(Dy) = 4npq



BONU

LA LESSIVE AUX
# 500 CADEAUX'

FIGURE 1 — BONUX

Exercice 5 (Le probléme du collectionneur, loi géométrique & espérance). Chaque paquet de lessive de la
marque Bonuz contient un cadeau, choisi au hasard parmi n cadeaux équiprobables. On note S le nombre de
paquets achetés jusqu’a obtenir k cadeaux différents. (Par suite S; = 1 et, pour chaque k > 2, Sy est une
variable aléatoire.)

1. Pour chaque k € [2,n], soit X, = Sk, — Sk—1. Déterminer la loi de probabilité de X}.
2. En déduire l'espérance E(S,) et montrer que E(S,) ~ n-In(n).
n— oo

1. Pour chaque k € [2,n], la variable aléatoire X} = S — Si_1 est le temps d’attente d’un succes. On appelle succes :
n—(k—1)
—— et la
variable aléatoire X}, suit une loi géométrique de parametre py car les achats forment une suite d’épreuves de Bernoulli
indépendantes.

obtenir un cadeau différent des k — 1 cadeaux déja obtenus. La probabilité d’un succes est donc pi =

2. Sp = (Sn — Sn—1) + (Sp—1 — Sp—2) + -+ (S2 — S1) + 51 = 1+ ZXk‘ D’ott (par linéarité de l’espérance) :
. ) . k=2 .
E(Sn) =1+ > E(Xg). Or E(Xy) = — = ————. D’olt B(Sp) =1+ —— + .
= pr n—(k—1) n—1 n-—2

--+%+ =n- Hy, ol

=13

1
H,=1+ 3 + .- — ~Inn (ne pas oublier de le démontrer en comparant série et intégrale).
n

Donc E(Sn) ~ n-lIn(n).

n—00

Exercice 6 (Série génératrice & espérance). Au concours de saut en hauteur, Zébulon tente de franchir une
a une les hauteurs 1, 2, 3, ---, n, --- Au premier échec, Zébulon est éliminé. La probabilité de franchir

chaque hauteur n est % On suppose les sauts indépendants et on note X le numéro du dernier saut réussi par
Zébulon.

FIGURE 2 — ZEBULON

1. Proposer un univers 2 et déterminer I’ensemble X (Q2) des valeurs prises par la variable aléatoire X.



2. Déterminer la loi de X, vérifier par le calcul que Z P(X =k) =1. Qu'en déduire ?

kEX ()
3. Ecrire la série génératrice de la variable aléatoire X, montrer que son rayon de convergence est infini et
que :
te! — et + 1

VteR', Gx(t)=——

4. En déduire que la variable X est d’espérance finie et calculer E(X), c’est-a-dire la hauteur que peut
espérer franchir Zébulon.

1. L’univers Q ne sert pas a grand chose ici mais puisqu’on le demande : appelons résultat une suite de F (pour échec) et de
S (pour succes), en faisant comme si Zébulon continuait de sauter méme aprés avoir échoué : alors Q = {S; E}N*.

L’ensemble des valeurs possibles de la variable aléatoire X est X (£2) = N*. On a supposé que Zébulon n’est pas Superman
et finira donc par échouer, mais les amateurs de super-héros poseront X (2) = N* U {oco}.

2. L’événement (X = k) est « le sportif réussit les k premiers sauts et rate le (k 4+ 1)-iéme saut. » En supposant les sauts
indépendants, on obtient :

1 1 1 k
PX=k=1-=-~-(1=——)= .
2 k k+1 (k+1)!
On peut aussi écrire P(X = k) = 7(IE:+1)1),1 = % (k+1)l’ pour faire apparaitre un télescope. Pour tout N € N*|
N 1 o
=k)=1— ———+ 1, d P(X =
2:: (V+ 1) Noso 90 kz::l (

On en déduit que I’événement « Zébulon passe toutes les hauteurs » est presque impossible.
3. La série génératrice de la variable aléatoire X est la série entiere

k
> P(X =k)-t* =thk.

’ k+1 tk‘H‘
Son rayon de convergence est +oo car (régle de D’Alembert) : (k+2)t k+l 1t — 0. Pour tout ¢ € R,
k k(k+2) k—o0
R+1)!
Gx(t)=> P(X =k) -tF = a4
x () 2; (X =Fk) ;(k—&-l)' z::d (k+1)!

On peut dériver terme & terme une série entiére sans changer son rayon de convergence, d’ou :

d &tk
vt € R, Gx(t):t-—z(

—.
dt = (k1 1)!
o) tout ¢ € R* i t S tout ¢ € R*
r, pour tou R = . Donc, pour tou ,
P ket 1) ¢ P
tel —et +1
Gx(t)zf‘

4. La fonction Gx est dérivable en 1, donc la variable aléatoire X est d’espérance finie et E(X) = G’y (1). Or, pour tout

d tet —et +1 thtftet+et71
t e R*, G\ (t
x(t) = dt t £2

.Donc E(X)=e—1.

Exercice 7 (Loi binomiale, inégalité de Markov & inégalité de concentration).

Soient n € N*, deux réels p et ¢ dans |0, 1] tels que ¢ > p et S,, une variable aléatoire réelle qui suit la loi
B(n, p).
1. Soit un réel u > 0. Rappeler I'espérance E(S,,). Montrer que la variable aléatoire e*» est d’espérance
finie et que F(e*) = (1 — p + pe)"



2. Montrer que
pt+q (1—p+pe")”
(5 S ) ST
3. Onnote g : Ry = R, ur In(1l —p+ pe*).
a(u)B(u)
(a(u) + B(u))?
(b) Montrer que ¢g”(u) < § pour tout u € Ry.
(¢) Montrer que :

(a) Exprimer ¢g”(u) sous la forme

2

Yu >0, In(l—p+ pe”) Spu—&—%.

4. Prouver l'inégalité de concentration suivante :

(S = p;q ) < e

1. Sn(2) = [0,n] et, pour chaque k € [0,n], P(S, = k) = (2) pF(1 — p)n—F.

n
La variable aléatoire S, posséde un espérance, égale & E(Sp) = Z P(Sn =k)-k=mnp.
k=0

D’aprés le théoreme de transfert, la variable aléatoire e%Sn posséde aussi une espérance car 1’ensemble Sn(£2) est fini et
cette espérance est égale a

E(e"Sn) = zn: (Z) PP —p)n Rt = z”: (Z> (pe)* (1 —p)"F = (1 —p+pe)™.

k=0 k=0

2. Pour rappel (de I'inégalité de Markov) : si X une variable aléatoire, & valeurs positives, possédant une espérance E(X),

E(X
alors, pour tout a > 0, P(X > a) < Q

nu

+
Si u = 0, I'inégalité est banale. Supposons u > 0. On choisit a = e 2 > 0 et on applique 'inégalité de Markov a la

variable aléatoire X = e%Sn | qui est bien & valeurs positives. Les deux événements (X > a) et (Sn > I)27qn) sont égaux

(car la fonction ¢t — exp(ut) est strictement croissante), d’ou :

1— u\n
P(Snzp;qn) < (L=p+pe")

— ep+q nu

: is déri ) = P 2 gpe” . a(uw)B(v)

3. (a) La fonction g est deux fois dérivable. Pour tout u > 0, g'(u) = I pipen et g’ (u) = @i = @@ tB@®’
notant a(u) = q et B(u) = pe*.

(b) Or [a(u) + B(w)]* > 4a(u)B(u) car [a(u) + B(u)]* - da(u)B(u) = [a(u) — B(u)]2 > 0, donc g"(u) <

(¢) La fonction g est continue, d’ou : ¢'(u) — ¢’'(0) = [;*¢"”(t)dt < [o' 3 Lar = 4 par croissanc

1
4

e de l’intégrale. Or
g dt < [y (p+ L) dt

g'(0) = p, d’ott ¢’(u) < p+ %. La fonction g’ est continue, d ot g(u) — g(0) =
2
par croissance de l'intégrale. Or g(0) = 0, donc : g(u) < pu + %

PU‘F?

4. On a montré que, pour tout v > 0,

P(Sn2p+qn) < (1—p+pe)" )
2 p+q

einu
u\n u? _ptq
(17p+pe ) _eng(u)f%nu <en[pu+TiTu]
p+qnu - =
e
2 —_ )2
Alors [pu +% - p?ﬂu] = f% ‘u-(4(g—p) —u) = 7@7‘” si u = 2(q — p). L’inégalité (x) étant vraie pour tout u > 0,

elle I’est en particulier si u = 2(g — p) qui est bien positif car on suppose que g > p. Donc

(p—a)?
(Sn> pQﬂn) <e " p2Q) .



Exercice 8 (Fonction de répartition & continuité décroissante). Soient (€2, o7, P) un espace probabilisé et X
une variable aléatoire discrete & valeurs dans R. La fonction de répartition de X est la fonction définie par

Fx : R—[0,1], a— Fx(a) = P(X <a).

1. Montrer que la fonction F'x est croissante.
2. En utilisant la fonction Fx, calculer P (a < X < b) pour tout a < b.

3. Soit (a,) une suite de réels tendant vers —oo en décroissant. En utilisant la suite des événements
A, = (X < ay), montrer que lim Fx(z)=0.
r—r—00

4. Etudier lim Fx(x).
Tr—r—+00

5. Soit un réel a. Soit a,, une suite de réels tendant vers a en décroissant. En utilisant la suite des événements
B, = (X < a,), montrer que F est continue & droite en a.

6. En utilisant la suite des événements C,, = (a — £ < X < a), montrer que F(a) = lim F(z)+P(X = a).

r—a~—

A quelle condition la fonction de répartition est-elle continue en a ?

1. Soient deux réels a et b. Si a < b, alors (X < a) C (X <b), d’ou (par croissance de la probabilité) : P(X <a) < P(X <b).
2. Soient deux réels a et b : | — 00,b] =] — 00,a]U]a,b], d’ot X1 (] —00,b]) = X1 (] — 00,a]) U X! (]a, b)),
dolt (X <b)=(X <a)U(a< X <b) et cette union est disjointe, d’'ot  P(X <b) = P(X <a)+ Pla< X <b).

3. D’apres le théoréme de la limite monotone, la fonction F'x posseéde une limite £1 en —oo, finie ou infinie. Soit (an) une suite
de réels qui tend vers —oo en décroissant. Pour chaque n € N, I’événement Ay, 11 = (X < an41) est inclus dans 1’événement

Ay = (X < ap), dou (par le théoréeme de continuité décroissante) : P m A, | = lim P(Ay). Or ﬂ An =0. D’ou
n— o0
neN neN
lim Fx(an) =0, donc ¢; = 0.
n— oo

4. D’apres le théoréme de la limite monotone, la fonction Fx posséde une limite £2 en 400, finie ou infinie. Soit (an) une
suite de réels qui tend vers +oo en croissant. Pour chaque n € N, I'événement A,, = (X < ay,) est inclus dans I’événement

An+t1 = (X < ap+1), Aot (par le théoréme de continuité croissante) : P U Ap | = lim P(Ay). Or U Ap = Q. Dou
n—oo
neN neN
lim Fx(an) =1, donc fo = 1.
n—o0

5. Soient un réel a et une suite (an) qui tend vers a en décroissant. Pour chaque n € N, 'événement Bp11 = (X < an41) est

inclus dans I’événement By, = (X < an), d’ou (continuité décroissante) : P m By | = lim P(Bp).
n— o0
neN

Or ﬂ B, est Pévénement (X < a). Donc lim Fx(an) = Fx(a). Or la fonction F est croissante, elle admet donc une
n—o0

neN
limite en a®™. Comme a, — a™, on en déduit 1im+ Fx (z) = Fx(a). Donc la fonction Fx est continue & droite en a.
Tr—ra
6. Pour tout n € N*, la probabilité de I'’événement Cy, = (a — % < X <a) est (x) : P(Cp) = Fx(a) — Fx (a — %) d’apres le
1.

D’apres le théoréme de continuité décroissante, lim P(C,) = P(X = a) car ﬂ Cr est I’événement (X = a) et
n—oo
neN*
Vn € N*, Ch+1 C Chr. De plus, la fonction Fx est croissante, d’oll (théoréme de la limite monotone), la fonction Fx

1
admet une limite en a—, d’ott Fix (a — 7) — lim Fx(x).
n r—a—

D’oui I’égalité (x) passe a la limite : Fx(a) = lim Fx(x)+ P(X = a). La fonction Fx est donc continue a gauche en a
T—a

sst P(X = a) = 0. Elle est par ailleurs toujours continue & droite en a d’apres la question précédente. Donc la fonction de
répartition est continue en a ssi P(X =a) = 0.

Et aussi : les exercices 95,100,104,109 de la banque CCINP & Dexercice 1 du DS n° 5 MPI/* 2024-2025 qui porte sur séries entieres

et variables aléatoires.



