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C o r r i g é d e l a f e u i l l e d e T . D . no 1 0

Va r i a b l e s a l é a t o i r e s
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Exercice 1. 1. Une variable aléatoire X à valeurs dans N suit une loi de probabilité vérifiant la relation

∀n ∈ N, P (X = n+ 1) =
4

n+ 1
P (X = n).

Déterminer la loi de probabilité de X, c’est-à-dire calculer P (X = n) pour tout n ∈ N.
2. Soient un réel p ∈]0, 1[ et une variable aléatoire X à valeurs dans N∗ telle que, pour tout n ∈ N∗ :

P (X = n) = p · P (X ≥ n).

Quelle est cette loi de probabilité ?

1. Par récurrence, pour tout n ∈ N,

P (X = n) = P (X = 0)
4n

n!
.

En utilisant le fait que

+∞∑
n=0

P (X = 0)
4n

n!
= 1 on obtient

P (X = n) = e−4 4
n

n!
.

Donc X suit une loi de Poisson de paramètre 4.

2. Pour tout n ∈ N∗,

P (X = n)− P (X = n+ 1) = p · P (X ≥ n)− p · P (X ≥ n+ 1) = p · P (X = n)

car (X ≥ n) = (X = n) ∪ (X ≥ n+ 1) et cette union est disjointe. On en déduit la relation

P (X = n+ 1) = (1− p)P (X = n)

qui permet de démontrer par récurrence que : P (X = n) = (1− p)n−1P (X = 1).

Pour déterminer P (X = 1), on remarque que

∞⋃
n=1

(X = n) est une union certaine et disjointe, d’où :

1 =
∞∑

n=1

(1− p)n−1P (X = 1) =
1

1− (1− p)
P (X = 1).

Donc
∀n ∈ N∗, P (X = n) = (1− p)n−1p.

La variable aléatoire X suit une loi géométrique de paramètre p.

Autre méthode : l’hypothèse P (X = n) = p · P (X ≥ n) implique, pour n = 1, que P (X = 1) = p · P (X ≥ 1). Or (X ≥ 1)
est l’événement certain, d’où P (X ≥ 1) = 1, donc P (X = 1) = p et on conclut comme ci-dessus.

Exercice 2 (Loi de Poisson). Soit X une variable aléatoire qui suit une loi de Poisson de paramètre λ.

1. Exprimer l’événement « X prend une valeur paire » comme une union disjointe. De même pour
l’événement « X prend une valeur impaire ».

2. Calculer la probabilité que la valeur de X soit paire et calculer la probabilité que la valeur de X soit
impaire. Comparer ces deux probabilités.



3. Soit n un entier naturel tel que n+ 1 > λ. Montrer que :

P (X ≥ n) ≤ e−λ · λ
n

n!
· 1

1− λ
n+1

.

4. En déduire que : P (X ≥ n) ∼
n→∞

P (X = n).

5. Montrer que : P (X > n) = o
n→∞

(P (X = n)) .

1. L’événement « X prend une valeur paire » est
⋃
k∈N

(X = 2k) tandis que l’événement « X prend une valeur impaire » est⋃
k∈N

(X = 2k + 1) et ces unions sont disjointes.

2. La variable aléatoire X suit une loi de Poisson de paramètre λ, d’où X(Ω) = N et ∀n ∈ N, P (X = n) = e−λ ·
λn

n!
. La

probabilité que la valeur de X soit :

— paire est
∞∑

k=0

P (X = 2k) = e−λ · ch(λ) ;

— impaire est

∞∑
k=0

P (X = 2k + 1) = e−λ · sh(λ)

d’après la question précédente. La valeur de X a plus de chances d’être paire qu’impaire car

∀λ ∈ R, chλ =
e+λ + e−λ

2
> shλ =

e+λ − e−λ

2
.

3. Soit n un entier naturel tel que n+ 1 > λ. L’événement (X ≥ k) est égal à
⋃
k≥n

(X = k) et cette union est disjointe, d’où :

P (X ≥ n) =

∞∑
k=0

P (X = n+ k) = e−λ ·
λn

n!
·

∞∑
k=0

λkn!

(n+ k)!
.

Or, pour tout k ∈ N, 0 ≤
λkn!

(n+ k)!
≤

(
λ

n+ 1

)k

et la série géométrique
∑(

λ

n+ 1

)k

converge car n+ 1 > λ. Sa somme

est
1

1− λ
n+1

. Donc P (X ≥ n) ≤ e−λ ·
λn

n!
·

1

1− λ
n+1

.

4. Pour chaque n ∈ N, (X = n) ⊂ (X ≥ n), d’où P (X = n) ≤ P (X ≥ n) par croissance de la probabilité. Par suite,

P (X = n) ≤ P (X ≤ n) ≤ P (X = n) ·
1

1− λ
n+1

d’après la question précédente. On divise par P (X = n) qui n’est pas nul

et, d’après le théorème des gendarmes,
P (X ≥ n)

P (X = n)
−→
n→∞

1. Donc P (X ≥ n) ∼
n→∞

P (X = n).

5. (X ≥ n) = (X > n) ∪ (X = n) et cette union est disjointe, d’où

P (X ≥ n) = P (X > n) + P (X = n),

donc P (X > n) = P (X ≥ n)− P (X = n).

Or P (X ≥ n) ∼ P (X = n), d’où P (X ≥ n) = P (X = n) · (1 + εn).

D’où P (X > n) = P (X = n) · (1 + εn)− P (X = n) = P (X = n) · εn.

Donc P (X > n) = o
n→∞

(P (X = n)) .

Exercice 3 (Loi géométrique & continuité décroissante). Deux joueurs A et B lancent à tour de rôle une pièce
de monnaie qui tombe sur pile avec la probabilité p ∈]0, 1[. Le premier qui obtient pile gagne le jeu. C’est A
qui commence à jouer.

1. Quelle est la probabilité que A gagne ? Quelle est la probabilité que B gagne ? L’un des deux joueurs
a-t-il plus de chances de gagner que l’autre ?

2. Calculer (de deux manières ?) la probabilité que le jeu ne s’arrête pas. Au quantième lancer peut-on
espérer avoir un gagnant ?



1. Soit T le temps d’attente du premier pile. La variable aléatoire T suit une loi géométrique de paramètre p car les lancers
forment une suite d’épreuves de Bernoulli indépendantes :

∀k ∈ N∗, P (T = k) = qk−1 · p, où q = 1− p

• L’événement An « le joueur A gagne à son n-ième lancer » est égal à (T = 2n− 1) car le joueur A commence puis
joue une fois sur deux. D’où

∀n ∈ N∗, P (An) = q2n−2 · p.
L’événement « le joueur A gagne » est égal à

⋃∞
n=1 An et cette union est disjointe, donc la probabilité que le joueur

A gagne est
∞∑

n=1

P (An) =
∞∑

n=1

q2n−2 · p = p ·
∞∑

n=0

(q2)n =
p

1− q2
=

1

2− p
.

• L’événement Bn « le joueur B gagne à son n-ième lancer » est égal à (T = 2n) car le joueur A commence puis B
joue une fois sur deux. D’où

∀n ∈ N∗, P (Bn) = q2n−1 · p.
L’événement « le joueur B gagne » est égal à

⋃∞
n=1 Bn et cette union est disjointe, donc la probabilité que le joueur

B gagne est
∞∑

n=1

P (Bn) =

∞∑
n=1

q2n−1 · p = pq ·
∞∑

n=0

(q2)n =
pq

1− q2
=

1− p

2− p
.

• Le joueur A a plus de chances de gagner que le joueur B car

1

2− p
>

1− p

2− p
.

2. L’événement « le jeu ne s’arrête pas » est le contraire de A∪B. Or cette union est disjointe, d’où P (A∪B) = P (A)+P (B) =
1

2− p
+

1− p

2− p
= 1. Donc la probabilité que le jeu ne s’arrête pas est nulle. Cet événement est donc presque impossible.

Autre méthode : l’événement « le jeu ne s’arrête pas » est égal à « la pièce tombe toujours sur face », donc égal à
⋂∞

n=1 Fn,
où Fn est l’événement « la pièce tombe les n premières fois sur face ». Or la suite (Fn) est décroissante car Fn+1 ⊂ Fn.
D’où (théorème de la continuité décroissante) : P (

⋂∞
n=1 Fn) = lim

n→∞
P (Fn) = 0 car P (Fn) = qn et |q| < 1.

La variable aléatoire T suit la loi G(p), elle possède donc une espérance finie et E(T ) = 1
p
.

Exercice 4 (Loi binomiale, espérance & variance). Un marcheur se déplace sur une droite en faisant un pas
vers la droite avec une probabilité p ∈]0, 1[ ou vers la gauche avec la probabilité q = 1− p. Pour chaque n ∈ N∗,
on note Xn sa position après n pas et Dn le nombre de pas vers la droite parmi ces n pas.

Calculer la loi de probabilité, l’espérance et la variance de la variable aléatoire Dn. En déduire l’espérance
et la variance de la variable aléatoire Xn.

Les n pas sont des épreuves de Bernoulli, qu’on suppose indépendantes. La variable aléatoire Dn suit la loi binomiale B(n, p), d’où
Dn(Ω) = J0, nK
∀k ∈ J0, nK, P (Dn = k) =

(n
k

)
pkqn−k

E(Dn) = np

V (Dn) = npq

.

Or Xn = Dn − (n−Dn) = 2Dn − n est la position après Dn pas vers la droite et n−Dn pas vers la gauche. D’où
Xn(Ω) ⊂ J−n,+nK

∀k ∈ J−n,+nK, P (Xn = k) = P
(
Dn = n+k

2

)
E(Xn) = E(2Dn − n) = 2E(Dn)− n = 2np− n

V (Xn) = V (2Dn − n) = 4V (Dn) = 4npq

.



Figure 1 – Bonux

Exercice 5 (Le problème du collectionneur, loi géométrique & espérance). Chaque paquet de lessive de la
marque Bonux contient un cadeau, choisi au hasard parmi n cadeaux équiprobables. On note Sk le nombre de
paquets achetés jusqu’à obtenir k cadeaux différents. (Par suite S1 = 1 et, pour chaque k ≥ 2, Sk est une
variable aléatoire.)

1. Pour chaque k ∈ J2, nK, soit Xk = Sk − Sk−1. Déterminer la loi de probabilité de Xk.

2. En déduire l’espérance E(Sn) et montrer que E(Sn) ∼
n→∞

n · ln(n).

1. Pour chaque k ∈ J2, nK, la variable aléatoire Xk = Sk − Sk−1 est le temps d’attente d’un succès. On appelle succès :

obtenir un cadeau différent des k − 1 cadeaux déjà obtenus. La probabilité d’un succès est donc pk =
n− (k − 1)

n
et la

variable aléatoire Xk suit une loi géométrique de paramètre pk car les achats forment une suite d’épreuves de Bernoulli
indépendantes.

2. Sn = (Sn − Sn−1) + (Sn−1 − Sn−2) + · · · + (S2 − S1) + S1 = 1 +
n∑

k=2

Xk. D’où (par linéarité de l’espérance) :

E(Sn) = 1 +

n∑
k=2

E(Xk). Or E(Xk) =
1

pk
=

n

n− (k − 1)
. D’où E(Sn) = 1 +

n

n− 1
+

n

n− 2
· · · +

n

2
+

n

1
= n ·Hn, où

Hn = 1 +
1

2
+ · · ·

1

n
∼ lnn (ne pas oublier de le démontrer en comparant série et intégrale).

Donc E(Sn) ∼
n→∞

n · ln(n).

Exercice 6 (Série génératrice & espérance). Au concours de saut en hauteur, Zébulon tente de franchir une
à une les hauteurs 1, 2, 3, · · · , n, · · · Au premier échec, Zébulon est éliminé. La probabilité de franchir
chaque hauteur n est 1

n . On suppose les sauts indépendants et on note X le numéro du dernier saut réussi par
Zébulon.

Figure 2 – Zébulon

1. Proposer un univers Ω et déterminer l’ensemble X(Ω) des valeurs prises par la variable aléatoire X.



2. Déterminer la loi de X, vérifier par le calcul que
∑

k∈X(Ω)

P (X = k) = 1. Qu’en déduire ?

3. Ecrire la série génératrice de la variable aléatoire X, montrer que son rayon de convergence est infini et
que :

∀t ∈ R∗, GX(t) =
tet − et + 1

t
.

.

4. En déduire que la variable X est d’espérance finie et calculer E(X), c’est-à-dire la hauteur que peut
espérer franchir Zébulon.

1. L’univers Ω ne sert pas à grand chose ici mais puisqu’on le demande : appelons résultat une suite de E (pour échec) et de

S (pour succès), en faisant comme si Zébulon continuait de sauter même après avoir échoué : alors Ω = {S;E}N∗
.

L’ensemble des valeurs possibles de la variable aléatoire X est X(Ω) = N∗. On a supposé que Zébulon n’est pas Superman
et finira donc par échouer, mais les amateurs de super-héros poseront X(Ω) = N∗ ∪ {∞}.

2. L’événement (X = k) est « le sportif réussit les k premiers sauts et rate le (k + 1)-ième saut. » En supposant les sauts
indépendants, on obtient :

P (X = k) = 1 ·
1

2
· · · ·

1

k
·
(
1−

1

k + 1

)
=

k

(k + 1)!
.

On peut aussi écrire P (X = k) =
(k+1)−1
(k+1)!

= 1
k!

− 1
(k+1)!

, pour faire apparâıtre un télescope. Pour tout N ∈ N∗,

N∑
k=1

P (X = k) = 1−
1

(N + 1)!
−→

N→∞
1, donc

∞∑
k=1

P (X = k) = 1.

On en déduit que l’événement « Zébulon passe toutes les hauteurs » est presque impossible.

3. La série génératrice de la variable aléatoire X est la série entière∑
P (X = k) · tk =

∑ k

(k + 1)!
tk.

Son rayon de convergence est +∞ car (règle de D’Alembert) :

∣∣∣ k+1
(k+2)!

tk+1
∣∣∣∣∣∣ k

(k+1)!
tk
∣∣∣ k+1

k(k+2)
|t| −→

k→∞
0. Pour tout t ∈ R,

GX(t) =

∞∑
k=1

P (X = k) · tk =

∞∑
k=1

k

(k + 1)!
tk = t ·

∞∑
k=1

d

dt

tk

(k + 1)!
.

On peut dériver terme à terme une série entière sans changer son rayon de convergence, d’où :

∀t ∈ R, GX(t) = t ·
d

dt

∞∑
k=1

tk

(k + 1)!
.

Or, pour tout t ∈ R∗,
∞∑

k=1

tk

(k + 1)!
=

et − 1− t

t
. Donc, pour tout t ∈ R∗,

GX(t) =
tet − et + 1

t
.

4. La fonction GX est dérivable en 1, donc la variable aléatoire X est d’espérance finie et E(X) = G′
X(1). Or, pour tout

t ∈ R∗, G′
X(t) =

d

dt

tet − et + 1

t
=

t2et − tet + et − 1

t2
. Donc E(X) = e− 1.

Exercice 7 (Loi binomiale, inégalité de Markov & inégalité de concentration).

Soient n ∈ N∗, deux réels p et q dans ]0, 1[ tels que q ≥ p et Sn une variable aléatoire réelle qui suit la loi
B(n, p).

1. Soit un réel u ≥ 0. Rappeler l’espérance E(Sn). Montrer que la variable aléatoire euSn est d’espérance
finie et que E(euSn) = (1− p+ peu)n.



2. Montrer que

P

(
Sn ≥ p+ q

2
n

)
≤ (1− p+ peu)n

e
p+q
2 nu

.

3. On note g : R+ → R, u 7→ ln(1− p+ peu).

(a) Exprimer g′′(u) sous la forme
α(u)β(u)

(α(u) + β(u))2
.

(b) Montrer que g′′(u) ≤ 1
4 pour tout u ∈ R+.

(c) Montrer que :

∀u ≥ 0, ln(1− p+ peu) ≤ pu+
u2

8
.

4. Prouver l’inégalité de concentration suivante :

P

(
Sn ≥ p+ q

2
n

)
≤ e−n

(p−q)2

2 .

1. Sn(Ω) = J0, nK et, pour chaque k ∈ J0, nK, P (Sn = k) =

(
n
k

)
pk(1− p)n−k.

La variable aléatoire Sn possède un espérance, égale à E(Sn) =

n∑
k=0

P (Sn = k) · k = np.

D’après le théorème de transfert, la variable aléatoire euSn possède aussi une espérance car l’ensemble Sn(Ω) est fini et
cette espérance est égale à

E(euSn ) =

n∑
k=0

(
n
k

)
pk(1− p)n−keku =

n∑
k=0

(
n
k

)
(peu)k(1− p)n−k = (1− p+ peu)n.

2. Pour rappel (de l’inégalité de Markov) : si X une variable aléatoire, à valeurs positives, possédant une espérance E(X),

alors, pour tout a > 0, P (X ≥ a) ≤
E(X)

a
.

Si u = 0, l’inégalité est banale. Supposons u > 0. On choisit a = e
p+q
2

nu > 0 et on applique l’inégalité de Markov à la

variable aléatoire X = euSn , qui est bien à valeurs positives. Les deux événements (X ≥ a) et

(
Sn ≥

p+ q

2
n

)
sont égaux

(car la fonction t 7→ exp(ut) est strictement croissante), d’où :

P

(
Sn ≥

p+ q

2
n

)
≤

(1− p+ peu)n

e
p+q
2

nu
.

3. (a) La fonction g est deux fois dérivable. Pour tout u ≥ 0, g′(u) =
peu

1− p+ peu
et g′′(u) = qpeu

(q+peu)2
=

α(u)β(u)

(α(u)+β(u))2
, en

notant α(u) = q et β(u) = peu.

(b) Or [α(u) + β(u)]2 ≥ 4α(u)β(u) car [α(u) + β(u)]2 − 4α(u)β(u) = [α(u)− β(u)]2 ≥ 0, donc g′′(u) ≤ 1
4
.

(c) La fonction g′′ est continue, d’où : g′(u) − g′(0) =
∫ u
0 g′′(t) dt ≤

∫ u
0

1
4
dt = u

4
par croissance de l’intégrale. Or

g′(0) = p, d’où g′(u) ≤ p+ u
4
. La fonction g′ est continue, d’où g(u)− g(0) =

∫ u
0 g′(t) dt ≤

∫ u
0 (p+ t

4
) dt = pu+ u2

8

par croissance de l’intégrale. Or g(0) = 0, donc : g(u) ≤ pu+
u2

8
.

4. On a montré que, pour tout u ≥ 0,

P

(
Sn ≥

p+ q

2
n

)
≤

(1− p+ peu)n

e
p+q
2

nu
. (∗)

Or
(1− p+ peu)n

e
p+q
2

nu
= eng(u)− p+q

2
nu ≤ e

n

[
pu+u2

8
− p+q

2
u

]
.

Alors
[
pu+ u2

8
− p+q

2
u
]
= − 1

8
· u · (4(q − p)− u) = − (p−q)2

2
si u = 2(q − p). L’inégalité (∗) étant vraie pour tout u ≥ 0,

elle l’est en particulier si u = 2(q − p) qui est bien positif car on suppose que q ≥ p. Donc

P

(
Sn ≥

p+ q

2
n

)
≤ e−n

(p−q)2

2 .



Exercice 8 (Fonction de répartition & continuité décroissante). Soient (Ω,A , P ) un espace probabilisé et X
une variable aléatoire discrète à valeurs dans R. La fonction de répartition de X est la fonction définie par

FX : R → [0, 1], a 7→ FX(a) = P (X ≤ a).

1. Montrer que la fonction FX est croissante.

2. En utilisant la fonction FX , calculer P (a < X ≤ b) pour tout a ≤ b.

3. Soit (an) une suite de réels tendant vers −∞ en décroissant. En utilisant la suite des événements
An = (X ≤ an), montrer que lim

x→−∞
FX(x) = 0.

4. Etudier lim
x→+∞

FX(x).

5. Soit un réel a. Soit an une suite de réels tendant vers a en décroissant. En utilisant la suite des événements
Bn = (X ≤ an), montrer que F est continue à droite en a.

6. En utilisant la suite des événements Cn =
(
a− 1

n < X ≤ a
)
, montrer que F (a) = lim

x→a−
F (x)+P (X = a).

À quelle condition la fonction de répartition est-elle continue en a ?

1. Soient deux réels a et b. Si a ≤ b, alors (X ≤ a) ⊂ (X ≤ b), d’où (par croissance de la probabilité) : P (X ≤ a) ≤ P (X ≤ b).

2. Soient deux réels a et b : ]−∞, b] =]−∞, a]∪ ]a, b], d’où X−1 (]−∞, b]) = X−1 (]−∞, a]) ∪X−1 (]a, b]),

d’où (X ≤ b) = (X ≤ a) ∪ (a < X ≤ b) et cette union est disjointe, d’où P (X ≤ b) = P (X ≤ a) + P (a < X ≤ b).

3. D’après le théorème de la limite monotone, la fonction FX possède une limite ℓ1 en −∞, finie ou infinie. Soit (an) une suite
de réels qui tend vers −∞ en décroissant. Pour chaque n ∈ N, l’événement An+1 = (X ≤ an+1) est inclus dans l’événement

An = (X ≤ an), d’où (par le théorème de continuité décroissante) : P

 ⋂
n∈N

An

 = lim
n→∞

P (An). Or
⋂
n∈N

An = ∅. D’où

lim
n→∞

FX(an) = 0, donc ℓ1 = 0.

4. D’après le théorème de la limite monotone, la fonction FX possède une limite ℓ2 en +∞, finie ou infinie. Soit (an) une
suite de réels qui tend vers +∞ en croissant. Pour chaque n ∈ N, l’événement An = (X ≤ an) est inclus dans l’événement

An+1 = (X ≤ an+1), d’où (par le théorème de continuité croissante) : P

 ⋃
n∈N

An

 = lim
n→∞

P (An). Or
⋃
n∈N

An = Ω. D’où

lim
n→∞

FX(an) = 1, donc ℓ2 = 1.

5. Soient un réel a et une suite (an) qui tend vers a en décroissant. Pour chaque n ∈ N, l’événement Bn+1 = (X ≤ an+1) est

inclus dans l’événement Bn = (X ≤ an), d’où (continuité décroissante) : P

 ⋂
n∈N

Bn

 = lim
n→∞

P (Bn).

Or
⋂
n∈N

Bn est l’événement (X ≤ a). Donc lim
n→∞

FX(an) = FX(a). Or la fonction F est croissante, elle admet donc une

limite en a+. Comme an → a+, on en déduit lim
x→a+

FX(x) = FX(a). Donc la fonction FX est continue à droite en a.

6. Pour tout n ∈ N∗, la probabilité de l’événement Cn =
(
a− 1

n
< X ≤ a

)
est (∗) : P (Cn) = FX(a)− FX

(
a− 1

n

)
d’après le

1.

D’après le théorème de continuité décroissante, lim
n→∞

P (Cn) = P (X = a) car
⋂

n∈N∗
Cn est l’événement (X = a) et

∀n ∈ N∗, Cn+1 ⊂ Cn. De plus, la fonction FX est croissante, d’où (théorème de la limite monotone), la fonction FX

admet une limite en a−, d’où FX

(
a−

1

n

)
−→ lim

x→a−
FX(x).

D’où l’égalité (∗) passe à la limite : FX(a) = lim
x→a−

FX(x) + P (X = a). La fonction FX est donc continue à gauche en a

ssi P (X = a) = 0. Elle est par ailleurs toujours continue à droite en a d’après la question précédente. Donc la fonction de
répartition est continue en a ssi P (X = a) = 0.

Et aussi : les exercices 95,100,104,109 de la banque CCINP & l’exercice 1 du DS no 5 MPI/* 2024-2025 qui porte sur séries entières

et variables aléatoires.


