
Lycée Clemenceau – Nantes MPI* – Vendredi 19 décembre 2025

D.S. no 5 de mathématiques

Cet énoncé comporte deux exercices et un problème.
L’exercice 1 est tiré de CCINP 2024 MPI Math 2.

Le problème est tiré de Centrale PSI 2022 Math 2.

L’exercice 2 est tiré de X-ENS 2025 PC Math 2.

Exercice 1

On considère la série de fonctions
∑
n⩾0

fn, où fn(x) = e−x
√
n, et on note f sa somme

∞∑
n=0

fn.

1) Montrer que l’ensemble de définition de la fonction f est D =]0,+∞[.

2) Démontrer que f est continue sur D.

3) Étudier la limite de f en +∞.

4) Soit x ∈ D. Montrer que l’intégrale

∫ +∞

0

e−x
√
t dt est convergente et la calculer.

5) En déduire un équivalent de f au voisinage de 0.



Problème

Ce problème étudie quelques propriétés d’un opérateur intégral U défini sur un espace préhilbertien réel E.
Cet espace et son produit scalaire sont introduits dans la partie I et l’endomorphisme U est étudié dans la
partie II. La partie III recherche, à l’aide d’une équation différentielle, des valeurs propres et vecteurs propres
de l’endomorphisme U .

On note E l’ensemble des fonctions continues de R∗
+ dans R

telles que l’intégrale

∫ +∞

0

f2(t)
e−t

t
dt converge.

Partie 1

1) Soient a et b deux nombres réels. Montrer que la fonction

f : R∗
+ → R
t 7→ aet + b

appartient à E si, et seulement si, a = b = 0.

2) Soit P une fonction polynomiale. Montrer que la restriction de P à R∗
+ appartient à E si, et seulement

si, P (0) = 0.

3) Montrer que, si f et g sont deux fonctions de E, alors l’intégrale

∫ +∞

0

f(t)g(t)
e−t

t
dt est absolument

convergente.

4) En déduire que E est un sous-espace vectoriel de l’espace vectoriel C(R∗
+,R) des fonctions continues sur

R∗
+ à valeurs dans R.

Pour toutes fonctions f ∈ E et g ∈ E, on pose ⟨f |g⟩ =
∫ +∞

0

f(t)g(t)
e−t

t
dt.

5) Montrer que l’on définit ainsi un produit scalaire sur E.

La norme associée à ce produit scalaire est donc définie pour toute fonction f ∈ E par

||f || =

√∫ +∞

0

f2(t)
e−t

t
dt.

Partie 2

6) Pour tout x ∈ R∗
+ et tout t ∈ R∗

+, on note

kx(t) = emin(x,t) − 1

où min(x, t) désigne le plus petit des réels x et t. Montrer que kx appartient à E.

7) Montrer que lim
x→0

||kx|| = 0.

À chaque fonction f ∈ E, on associe la fonction U(f) définie pour tout x > 0 par

U(f)(x) =

∫ +∞

0

(emin(x,t) − 1)f(t)
e−t

t
dt.



8) En remarquant que U(f)(x) = ⟨kx|f⟩, montrer que, pour toute fonction f ∈ E, lim
x→0

U(f)(x) = 0.

9) Soit f ∈ E. Montrer que U(f) est de classe C1 sur R∗
+ et vérifie, pour tout x > 0,

(U(f))′(x) = ex
∫ +∞

x

f(t)
e−t

t
dt.

Dans la suite, pour alléger les notations, la dérivée de la fonction U(f) est notée U(f)′.

10) Montrer que, pour tout f ∈ E et pour tout x > 0,

|U(f)′(x)| ≤ ex||f ||
(∫ +∞

x

e−t

t
dt

)1/2

≤ ||f ||e
x/2

√
x
.

11) On pose

Φ(x) =
4
√
xex/2

1 + x
−

∫ x

0

et/2√
t
dt.

Montrer que la fonction Φ est bien définie sur ]0,+∞[, que Φ est dérivable et que Φ′(x) ≥ 0 pour tout

x > 0. Étudier lim
x→0

Φ(x) et en déduire que Φ(x) est positif pour tout x > 0.

12) On suppose que f est une fonction de R∗
+ dans R de classe C1 vérifiant

lim
x→0

f(x) = 0,

∃C > 0, ∀x > 0, |f ′(x)| ≤ C
ex/2√

x
.

Montrer que, pour tout x > 0, |f(x)| ≤ 4C
√
xex/2

1+x . En déduire que f ∈ E.

13) Déduire de ce qui précède que U est un endomorphisme de E et que, pour tout f ∈ E et tout x > 0,

|U(f)(x)| ≤ 4||f ||
√
xex/2

1 + x
.

14) En déduire que, pour tout f ∈ E,
||U(f)|| ≤ 4||f ||.

15) Montrer que l’endomorphisme U n’est pas surjectif.

Partie 3

16) Soit f ∈ E. Montrer que U(f) est de classe C2 sur R∗
+ et que la fonction U(f) est une solution sur R∗

+

de l’équation différentielle

y′′(x)− y′(x) = −f(x)

x
.

17) Montrer que l’endomorphisme U est injectif. Qu’en déduire sur le spectre de U ?

Pour tout p ∈ R∗, on note (Ep) l’équation différentielle sur R∗
+ suivante :

x (y′′(x)− y′(x)) + p y(x) = 0.

18) Montrer que (Ep) possède des solutions polynomiales non identiquement nulles si, et seulement si,
p ∈ N∗. Montrer qu’alors, les solutions polynomiales non nulles de (Ep) sont de degré p et appartiennent
à l’espace vectoriel E. (On ne demande pas de déterminer explicitement les solutions polynomiales
lorsqu’elles existent.)

19) Soient p ∈ N∗ et P une solution polynomiale non nulle de (Ep). Démontrer que la fonction pU(P )− P
vérifie sur R∗

+ l’équation différentielle y′′(x)− y′(x) = 0.

20) En déduire que P est un vecteur propre de U associé à la valeur propre 1/p.



Exercice 2

On note n un entier strictement positif et In la matrice identité de taille n. Les vecteurs de Rn sont notés
en gras et sont identifiés à des matrices colonnes x ∈ Mn,1(R), par exemple

x =


x1

x2

...
xn


de transposée xT =

(
x1 x2 . . . xn

)
. De même, on identifie matrices carrées de Mn(R) et endomorphismes

de Rn. Enfin, pour tous x,y ∈ Rn, la matrice xTy ∈ M1(R) est identifiée au nombre réel
∑n

i=1 xiyi ; l’espace
euclidien Rn est muni de son produit scalaire et de sa norme usuels, notés respectivement

⟨x,y⟩ = xTy =

n∑
i=1

xiyi et ||x|| =
√
⟨x,x⟩ =

√√√√ n∑
i=1

x2
i .

1) Soit K ∈ Mn(R) une matrice carrée. Montrer que K est de rang 1 si, et seulement si, il existe
u,v ∈ Rn \ {0} tels que K = uvT . Déterminer alors Im(K) et Ker(K).

2) Soient u,v,x,y ∈ Rn \ {0}. Montrer que uvT = xyT si, et seulement si, il existe λ ∈ R \ {0} tel que

u = λx, et v =
1

λ
y.

3) Soit K ∈ Mn(R) une matrice de rang 1, et soient u,v ∈ Rn tels que K = uvT .

a) Montrer que Tr(K) = ⟨v,u⟩.
b) Montrer que K2 = Tr(K)K.

c) En déduire que K est diagonalisable si et seulement si Tr(K) ̸= 0.

4) Soit P ∈ Mn(R). Montrer que P est une projection orthogonale de rang 1 si, et seulement si, il existe
y ∈ Rn tel que ||y|| = 1 et P = yyT .

Soit A ∈ GLn(R) une matrice inversible, et soient u,v ∈ Rn.

5) Calculer le produit matriciel par blocs(
In 0
vT 1

)(
In + uvT u

0 1

)(
In 0

−vT 1

)
et en déduire que : A+ uvT est inversible si, et seulement si, ⟨v, A−1u⟩ ̸= −1.

6) On suppose que A+ uvT est inversible. Montrer que

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + ⟨v, A−1u⟩
.

7) Exhiber une matrice C ∈ Mn(R) et deux vecteurs u,v ∈ Rn tels que

det(C) = 0 et det(C + uvT ) ̸= 0.


