Chapitre XI Espaces vectoriels normés
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XI.1 NORMES ET DISTANCES

DEFINITION 1
Soit E un (R— ou C—)espace vectoriel. Une application N : E — R, est appelée une norme si, pour
tous vecteurs x € E, y € F et scalaire a € K :

(i) N(z) =0p = z=0g (it) N(ax) = |a|N(z) (iti) N(z +y) < N(z) + N(y).

Un espace vectoriel muni d'une norme est appelé un espace vectoriel normé (evn).

EXERCICE 2 —

1. La valeur absolue est une norme sur le R—espace vectoriel R : y en a-t-il d’autres ¢ Le module est
une norme sur le C—espace vectoriel C : y en a-t-il d’autres ?
2. Par définition, toute norme N vérifie la propriété (iii), appelée U'inégalité triangulaire. En déduire
que :
¥(z,y) € E?, [N(z) = N(y)| < N(z —y).

Sur un méme espace vectoriel, on peut définir plusieurs normes.

EXEMPLE 3 —

1. Voici trois normes classiques sur l'espace vectoriel R™ ou C" (ot n € N*) des vecteurs x =
(*7717"' 71:n) ;

[zlly = |z1]+ -+ |zal Izl = V0w + -+ Jza? [#]loc = max(|z1],- -, |znl)
n
= Z ] = = nax £

2. Voici trois normes classiques sur 'espace vectoriel C([a, b],K) des fonctions f continues d’un segment
[a,b] vers K=R ou C :

b b
1l = / ()]t 12 = / ()2 dt 1flo = max [£®)]

t€la,b]
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CHAPITRE XI. ESPACES VECTORIELS NORMES

3. Plus généralement, si f est une fonction définie sur un intervalle I et a valeurs dans K, alors

1l = / FOldE . (Il = / FORE 0w fl = suplf)

définit une norme sur Uev L1(I)NC(I) des fonctions continues et intégrables sur I, l'ev Ly(I)NC(I)
des fonctions continues et de carré intégrable sur I ou l’ev des fonctions bornées sur I respectivement.

4. Si By, Es,--- | E, sont des espaces vectoriels normés, alors on peut munir l’espace vectoriel produit
Ey x -+ X E, de la norme définie par ||(v1, -+, 0,)|| =
[+l 0w A2+ 4 [[Gal? 0w max([fe ], [|0n])-

Une norme permet de mesurer la distance entre deux vecteurs :

DEFINITION 4
La distance associée 3 une norme N est I'application d : E? — R, (x,y) > d(x,y) = N(y — z).

De la définition 1, il résulte que :

V(z,y) € E?, d(z,y) =0 <= x =1y et Y(z,y,2) € B3, d(x,2) < d(x,y) +d(y,2).

FIGURE XI.1 — DEUX DISTANCES ENTRE DEUX FONCTIONS

REMARQUE 5 — Si une norme provient d’un produit scalaire, alors on dit que cette norme est euclidienne.
Ce produit scalaire est alors unique (car on peut le calculer grice aux égalités de polarisation) et cette
norme vérifie l’égalité du parallélogramme (remarque 9 du chapitre VIII).

Mais certaines normes ne proviennent pas d’un produit scalaire, par exemple la norme « infini »
[(z,y)]|oe = max(|z],|y|) sur lev R,

N

Preuwve — Siu = (2,1) et v=(1,2), alors [u+ v||oo =3 [u —v||eo =1 [[u]loo = 2 [v||oo = 2,
d’ou llu+vl|% + llu — v||2, # 2||lull? + 2||v||2,. Donc I’égalité du parallélogramme n’est pas vérifiée. O
XI.2 BOULES

DEFINITION 6

Soient un espace vectoriel E, une norme N, un vecteur a € E et un réel r > 0. On appelle :
1. spheére de centre a et de rayon r la partie de E définie par {r € E | N(x —a) =r1};
2. boule ouverte de centre a et de rayon r la partie de F définie par {x € E| N(z —a) <r};
3. boule fermée de centre a et de rayon 7 la partie de E définie par {z € E | N(z —a) <r}.
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XI1.3. LIMITE D’UNE SUITE

AN O
AN

N
Vi 1

FIGURE XI.2 — LES BOULES (DE CENTRE Ogz ET DE RAYON 1) ASSOCIEES AUX TROIS NORMES CLASSIQUES
(1, 2 ET o0) DE R?

_ La boule ouverte de centre a et de rayon r est notée B(a,r) tandis que la boule fermée est notée
B(a,r). La sphére est B(a,r) \ B(a,r).

EXERCICE 7 — Montrer que :

Ve eR", oo < [lzllz < llzlh < V- flzlz <0 7).

DEFINITION 8
Soient E un espace vectoriel et || - || une norme sur E. On dit que :

(i) une partie A C E est bornée si 3IM € R, Vz € A, ||z|| < M ;
(i) une suite v : N — E, n — wu, de vecteurs est bornée si IM € R, Vn € N, |u,| < M;
(iii) une fonction f : D — E, x> f(z) est bornée si IM € R, Vt € D, ||f(t)| < M.
Autrement dit : il existe M € R tel que

(i) AC B(0g, M) (i) ¥neN, u, € B(0g, M) (i) f(D) C B(0g, M).

XI.3 LIMITE D’UNE SUITE

Dans R, pour dire qu’un nombre = tend vers un nombre a, on utilise la valeur absolue :
r—a << r—a—0 <<= |r—al—=0.
Dans un espace vectoriel E, pour dire qu'un vecteur x tend vers un vecteur a, on utilisera une norme :

xT—a < x—a—0g < N(@-—a)— 0 < d(z,a) — Og.

DEFINITION 9
Soient E un espace vectoriel et || - || une norme sur E. Soit une suite (u,,) d'élements de E. Soit un vecteur
¢ € E. On dit que u, tend vers ¢ si ||u, — £|| tend vers Og.

Autrement dit : Ve >0, AN e N, Vne N, (n>N = |u, — ¥ <e).

ProrosiTION 10
Soit une suite (u,) d'élements d'un evn E.

1. (unicité de la limite) Il n’existe pas toujours de limite ¢, mais, quand elle existe, elle est unique. On

peut donc parler de la limite de u,, et écrire { = lim wu,.
n—o0

2. (cv=>bornée) Si la suite des vecteurs u,, converge, alors elle est bornée. (La réciproque est fausse.)
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CHAPITRE XI. ESPACES VECTORIELS NORMES

Preuve —
1. Par labsurde : si (uy) converge vers deux limites £1 et ¢2 distinctes, alors : pour tout ¢ > 0,
N1 €N, Vn > Ny, |lun —l1]] <& et IN2 €N, Vn > Na, |up — b2 <e.
Si on choisit d’une part € = %Hﬁg — 41| (qui est bien strictement positif car £1 # £2) et d’autre part n > max (N1, N2),
alors : 0 < [[la — £1]] < [[l2 — un|| + [Jun — £1] < %HEQ — £1]|. C’est absurde.
2. Siup, — £ € E,alors AN € N, ¥n > N, |jun — £|| < V7. (on a choisi ¢ = v/7), d’oit : & partir du rang N,
n—o0

llun — €l < V7, dot [lun |l < [lun — £l +[1€]l < V7 + |[£]|; avant le rang N, [Jun| < max(|luoll, -+, [lun—1l]). Donc,
pour tout 7 € N, [lun | < V7 + [[£]| + max(|Juoll,- -, [lux—1l])-

O

EXERCICE 11 — La suite des fonctions g, : [0,1] — R représentées sur la figure X1.5 est-elle bornée ¢
convergente ¢ (Utiliser la norme oo puis la norme 1 pour répondre.)

REMARQUE 12 (la norme « infini » est la norme de la convergence uniforme) — Si I est une partie de R,
alors l'ensemble E des fonctions bornées de I vers R ou C est un ev, qu’on peut munir d’une norme :

VieE, |fle= stlelglf(t)l-
Dans cet evn E,
fn j> f — ”fn_fHoo ? 0 sup|fn(t)—f(t)| — 0

<= la suite des fonctions f, converge uniformément sur I vers la fonction f.

DEFINITION 13
Soit (uy,) une suite de vecteurs de E. On dit qu'une suite (v,,) est extraite de (u,,) s'il existe une application
® : N — N strictement croissante telle que Vn € N, v, = ug(y).

A noter que, par récurrence, la stricte croissance de ¢ implique que : Vn € N, ¢(n) > n.

ProrosiTION 14
Si une suite converge, alors toute suite extraite converge vers la méme limite.

Preuve — Soit (u,(y,)) une suite extraite de (un). Si un — LyalorsVe >0, 3N eN,VneN, (n>N = |u, —{|| <e).
n oo
Or p(n) >n,dotin >N = ¢(n) >N = |uy,m) — £ <e. O

XI.4 COMPARER DES NORMES

DEFINITION 15
Soient N et || - || deux normes sur un espace vectoriel E. On dit que ces normes sont équivalentes s'il existe
deux réels « et [ tels que

Vec B, N@) <a-|a| et [af <B-N().

REMARQUE 16 — 1. Cette relation entre deux normes est une relation d’équivalence (car elle est
réflexive, symétrique et transitive).
2. St deux normes sont équivalentes, alors ce qui converge pour l'une converge aussi pour 'autre :
N(z—a) >0 < ||z —al| = 0. Et la limite ne dépend pas non plus de la norme.

Preuve — Si ||z — a|| tend vers 0, alors N(z — a) aussi car N(z —a) < a- ||z — al|.

De méme pour la réciproque. O
3. De méme, étre ou me pas étre borné est indépendant du choix de la norme, si les normes sont

équivalentes.
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XI.4. COMPARER DES NORMES

4. Les trois normes classiques sur l’espace vectoriel R"™ sont équivalentes car
V2 eR", |zl <[lzfi <0 flzfloe et 2]l < [lzll2 < V- fl2fl
d’apres lexercice 7.

THEOREME 17
Sur un espace vectoriel de dimension finie, toutes les normes sont équivalentes.

Preuve — Voir 'annexe B. O

Donc, en dimension finie, ni la convergence ni la limite, ni le caractére borné ne dépend de la norme.
Ce n’est plus vrai en dimension infinie! C’est ce que montre ’exercice suivant.

EXERCICE 18 — 1. Soit E l’espace vectoriel des fonctions de [0, 1] vers R continues. Déterminer un
réel o tel que :Vf e E, | flli <a-||flle-
2. Pour tout n € N, on consideére les fonctions f,, et g, définies sur [0,1] et représentées ci-dessous :

1 M+2 F——A OIn
|
I
fn |
|
|
|
1 1 L
n+1 2n4+2 n+l

FIGURE XI.3 — DEUX SUITES DE FONCTIONS

Etudier || foll1 et || fnlloo ainsi que ||gnlly et ||gnllso. Conclure.

COROLLAIRE 19 (coordonnée par coordonnée)
Soient un evn E de dimension finie, un vecteur £ € E et une suite (u,) de vecteurs de E :

Uy, tend vers £ si, et seulement si, chaque coordonnée de u,, tend vers chaque coordonnée de /.

Preuve — Soit d la dimension de I’ev E. On se place dans une base (e, --e4) de E. L’application

N :E—Ry, z=x1e1+ -+ z46q — max (|zi|)
ic[1,d]

’

est une norme sur E. On choisit de travailler avec cette norme. D’apres le théoreme 17, up, — £ <= N(up —¥¢) — 0.
n—oo n—oo

Or N(up —€) — 0 <= max (|(un); —4|) — 0 <= Vie[1,d], [(un)i—4i| — 0 < Vie [L,d], (un);i — 4.
n—oo ic[1,d] n—oo n— oo n—oo

O

EXERCICE 20 — Soient un réel a et, pour chaque n € N*, la matrice

A= 1")

Montrer que la suite de matrices (Ap)nen+ converge vers la matrice
cosa —sina
L=1". .
sina  cosa
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CHAPITRE XI. ESPACES VECTORIELS NORMES

XI.5 ADHERENCE

DEFINITION 21
Soit A une partie d'un espace vectoriel normé E.

On dit qu'un vecteur £ € E est adhérent a A si toute boule centrée en £ rencontre A :

Ve>0, B(l,e)NA#D.

L’adhérence de A, notée A, est I'ensemble des vecteurs adhérents 3 A.

Tous les points de A sont adhérents & A : on a toujours A C A. Mais pas toujours A C A, comme le
montre I’exemple suivant.

EXEMPLE 22 —  — Soient les trois intervalles I = [0,1], J =]0,1] et K =]0,+00[ de R :
I=1 , J=1 , e K=][0,+ocl

— L’adhérence B(a,r) d’une boule owverte B(a,r) est la boule fermée de méme centre a et de méme
rayon 1.

PROPOSITION 23 (caractérisation séquentielle de I’adhérence)
Un vecteur ¢ € E est adhérent a3 A C E si, et seulement si, £ est la limite d'une suite (u,,) d'éléments de A.

Preuve — Supposons que £ est adhérent & A. Alors Vn € N*,  B(¥, %) N A # 0. Soit up, un vecteur de B(¢, %) N A. Chaque
upn appartient & A et la suite (un) tend vers £. Réciproquement, supposons que un € A et upn tend vers £. Soit € > 0. Il existe
n tel que ||un — £]] < e. D’ott up, € B(4,¢). De plus uy, € A. D’ott up, € B(¢,e) N A. D’out B({,e) N A # 0. Donc £ est adhérent
a A. O

DEFINITION 24
Soit A une partie d'un espace vectoriel normé E. On dit que A est dense dans E si A = E Autrement dit :
tout vecteur de E est adhérent 3 A. Ou encore : tout vecteur de E est la limite d'une suite de vecteurs de A.

EXEMPLE 25 — 1. Q est dense dans R. Et R\ Q aussi est dense dans R.
€
zeR, yeR i \
o ge>l 1xq
* é - X ¥
veZ, geN q-z D -y \\ 1
p 19
p 4 3
q < Q €T Yy

FIGURE XI.4 — DENSITE DE Q DANS R

2. D’apreés le théoréme V.25 d’approzimation de Weierstrass, 'ensemble des fonctions polynomiales est
dense dans U'ev C([a,b]) des fonctions continues sur un segment [a,b] muni de la norme « infini ».

EXERCICE 26 — Montrer que l’ensemble GL,,(K) des matrices inversibles est dense dans M, (K).

XI.6 LIMITE D’UNE FONCTION
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XI.7. CONTINUITE D’'UNE FONCTION

DEFINITION 27

Soient E et F' deux espaces vectoriels normés. Soit une fonction [ : D — F, x +— f(x) définie sur une
partie D C E. Soient a un point adhérent 3 D et £ € F. On dit que f(x) tend vers ¢ quand z tend vers
a, et on note f(x) - ?si

1/ () — £

—
[|z—a||—0

Autrement dit :

Ve >0, 30 >0,Vee D, |z—al <0 = |f(z)—{]<e

REMARQUE 28 — 1. (abus de notation) Dans cette définition, il y a deux normes : ||x — al| est une
norme sur E et || f(z) — £|| est une norme sur F.
2. (unicité de la limite) Il n’eziste pas toujours de limite £, mais, quand elle existe, elle est unique. On
peut donc parler de la limite de f en a et écrire £ = il_rg flx) oul = lignf.

PROPOSITION 29 (caractérisation séquentielle de la limite)
f(x) tend vers £ quand x tend vers a si, et seulement si, a chaque fois qu'une suite (u,) tend vers a, la
suite f(uy) tend vers £.

Preuve — Supposons que f(z) — £ quand z — a. Alors Ve > 0, 36 > 0, Vz, |z —a| <d = ||f(x) —{|| < e. Soit une
suite (un) qui tend vers a. Alors 3N, Vn > N, |lun —al|| < 4. Dot Vn > N, |[f(un) —£|| < €. Donc f(un) tend vers
£. Réciproquement, supposons que f(z) ne tend pas vers £ quand = tend vers a. Alors 3¢ > 0, V6 > 0, Jz, |z —aq|l <
6 et ||f(z) — || > e. D’ou, pour chaque n € N*, il existe un z tel que ||z — al| < % et ||f(x) — || > . Appelons u, cet x.

Alors un tend vers a et f(un) ne tend pas vers £. O

EXERCICE 30 — Les fonctions définies de R? \ {(0,0)} vers R par
xy LY

et T,Y) = —————
e 9wy = e

possédent-elles une limite quand (z.y) tend vers (0,0) ¢

f(x,y) =

XI.7 CONTINUITE D’UNE FONCTION

DEFINITION 31
Soient E et F' deux espaces vectoriels normés. Soit une fonction f : D — F, x +— f(x) définie sur une
partie D C E.

1. Soit a € D. On dit que f est continue en a si f(z) — f(a).
r—ra
2. Soit A C D. On dit que f est continue sur A si f est continue en tout point de A.

EXERCICE 32 — Soient [ et g deuz applications continues sur un espace vectoriel normé E. Soit une
partie A dense dans E. Montrer que :

sive e A, f(z)=g(z), alorsVz € E, f(x)= g(z).

Autrement dit : deux applications continues qui coincident sur une partie dense sont égales.

DEFINITION 33
Soit A une partie d'un evn E. On dit qu'une fonction f est :

— uniformément continue sur A si

Ve >0, 30 >0, Y(a,z) € A%, |z —a| <6 = ||f(z) - f(a)] <e;
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CHAPITRE XI. ESPACES VECTORIELS NORMES

— lipschitzienne sur A si

IK € R, V(a,x) € A%, [|f(x) — fla)]| < K - [l —al.

EXERCICE 34 — On a déja montré a Uexercice 20 du chapitre V que la fonction x — 22 est continue
mais pas uniformément continue sur R.

Montrer que la fonction x v /z est uniformément continue mais pas lipschitzienne sur [0, 1].

PRrROPOSITION 35
lipschitzienne — uniformément continue — continue

Preuve — Supposons que f est lispchitzienne sur A : il existe alors K > 0 tel que
V(a,z) € A%, [|f(x) - f(@)| <K -|lz —al. D'on
Ve >0, V(a,z) € A%, o —a| < % = |f(z) = fla)] <e.
D’ou f est uniformément continue sur A.

Supposons que f est uniformément continue sur A, alors :
Ve >0, 30 >0, Y(a,2) € A%, |z —a| <J = ||f(z) — f(a)| <e. Don
Va€ A, Ve>0,36 >0, Vze A, J|z—al<éd = |f(z)—fla)]<e.

f est continue en a

D’out f est continue en tout point a € A, donc sur A.

Les réciproques sont fausses d’apres 1’exercice précédent. O

COROLLAIRE 36
Toute norme est 1—lipschitzienne, donc uniformément continue, donc continue.

Preuve — D’apres ’exercice 2, toute norme N sur un ev E vérifie la propriété
V(z,y) € E?, |N(z) = N(y)| < N(z —y)

et est donc une application 1—lipschitzienne de ’evn E vers R. O

XI.8 LINEARITE & CONTINUITE

THEOREME 37
Soient E et F deux espaces vectoriels normés. Soit f une application linéaire de E vers F. Il y a équivalence
entre :
1. f est continue sur F;
. f est continue en O ;
. f est bornée sur la boule unité de F;
il existe un réel K tel que Vo € E, ||f(z)| < K| ;
. f est lipschitzienne sur E;
. f est uniformément continue sur E.

oA WN

Preuve — Nous savons déja que 1. = 2. et 5. = 6. et 6. = 1.

2. = 3. car f est linéaire, d’olt f(0g) = OF et la continuité en O implique qu’il existe 6 > 0 tel que :
Vze B, |z=|z-0]<é= [f(z)-fO)=If() <1
Et, par linéarité de f : Va € E, |z|| <1 = |[|f(z)]| < %. Donc f est bornée sur la boule unité.

3. = 4. car, pour tout = # Og, le vecteur ﬁ est de norme 1, d’'ou IK € R, Vx # Og, Hf (H%I)H < K, donc
JK € R, Vz # 0g, ||f(2)|| < K|jz||. Et cette inégalité reste vraie si x = 0.

4. = 5. car, par linéarité de f : ¥(x,a) € E2, || f(x) — f(a)l| = | f(z — a)|| < Kllz — all. O
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XI.8. LINEARITE & CONTINUITE

EXERCICE 38 — Soit l'application linéaire d : K[X] — K[X], P — P. On munit l'ev K[X] des polynomes

deg P
de la norme N : K[X] - R, P= Z a; X' max (|a;]). Montrer que d n'est pas continue.
— 0<i<deg P

Cet exercice montre que, sur un evn de dimension infinie, une application peut étre linéaire sans étre
continue. Le théoreme suivant montre que cela n’arrivera jamais sur un evn de dimension finie.

THEOREME 39
Soient F et F' deux espaces vectoriels normés. Si f : E — F est linéaire et si E de dimension finie, alors f
est lipschitzienne, donc continue sur F.

Preuve — Notons N la norme sur I’espace vectoriel E et || - || la norme sur I'espace vectoriel F. L’espace vectoriel E est de
dimension finie, d’ou :
— on peut choisir une base (e1, - ,eq) de E et donc écrire chaque vecteur z € E sous la forme zie1 + -+ + zgeq;
— on peut munir Pev E de la norme N définie par N(z) = max(|z1], - ,|zq|). Alors
f@) = aif(er) +---+zaf(ea), dou
If @I < lellf(e)ll + -+ lzalllf(ea) || (inégalité triangulaire)
< K-N(z) avec K =dxmax(|f(e)|, - ,f(ea)ll)-

— On en déduit, grace au théoreme 37, la continuité de f, pour ce choix de la norme N sur E, ou pour tout autre choix,
car FE est de dimension finie et les normes sont équivalentes en dimension finie.

O

EXEMPLE 40 — L’ev M,,(K) est de dimension finie, donc les applications suivantes sont continues car
linéaires :

— la trace tr : Mp(K) - K, A—trA;

— la transposée M, (K) — M, (K), A AT ;

— un changement de base M,,(K) — M, (K), A+ P~1AP ou P € GL,(K).

Les mémes raisonnements valent pour les applications multilinéaires, ce que nous admettons :

PROPOSITION 41

Soient F1, Es,---, E, et F des espaces vectoriels normés. On munit |'espace vectoriel produit E7 X - -+ X F,,
n

de la norme définie par ||(v1, -+ ,v,)|| = max(||v1]l, -, ||vnl]). Soit f : HEZ — F' une application
i=1

multilinéaire : f est continue ssi il existe un réel K tel que

n
V(v1, v, ,0p) € HEi If (1,09, o) < Kfjor|l||ve]l - -« |vall-
i=1
Et c'est le cas si les ev Ey, Fs,---, E, sont de dimensions finies.

EXEMPLE 42 —

1. Si on munit un R—ev E (de dimension finie ou infinie) d’un produit scalaire, alors ce produit scalaire
est continu de E? vers R car il est bilinéaire et V(u,v) € E?, [(u,v)| < ||lul| - [|v]| d’aprés linégalité
de Cauchy-Schwarz.

2. La multiplication de deux matrices

Mpp(R) X Mp,(R) = M, (R), (A,B)— A-B

est bilinéaire, donc continue car les ev Myp(R) et M, (R) sont de dimensions finies.
3. Si B est une base d’'un K—ev E de dimension n, alors le déterminant

dgt : B — Ka (1)171}27"' vvn) = dgt(vlyv%"' vvn)

est continu car il est multilinéaire et l'ev E est de dimension finie.
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CHAPITRE XI. ESPACES VECTORIELS NORMES

XI.9 NORME SUBORDONNEE

REMARQUE 43 — 1. L’ensemble des applications linéaires d’un ev E vers un ev F' est noté L(E, F).
Cet ensemble L(E, F) est un ev, c’est aussi un anneau (pour les lois + et o), c’est méme une algébre
(annexe A).

2. Si on munit chacun des ev E et F' d’une norme, alors une application linéaire f € L(E, F) peut
étre ou ne pas étre continue (exercice 38). On note L.(E, F) l’ensemble des applications linéaires de
levn E vers Uevn F' qui sont continues. L’ensemble L.(E, F') est une sous-algébre de L(E, F').

3. Si l'evn E est de dimension finie, les ensembles L(E, F) et L.(E, F) sont égaux (théoréme 39).

PROPOSITION-DEFINITION 44
Soient E et F' deux evn. Soit f € L.(E, F) une application linéaire continue de E vers F.

(i) On appelle norme subordonnée (ou norme d'opérateur) de f et on note || f|| le plus petit réel K tel
que : Vx € E, | f(x)] < K -|z|. Il vaut

1Al = sup @U@l

etos 2] ez
(74) La norme subordonnée est une norme sur I'ev L.(FE, F'). Et cette norme est sous-multiplicative, i.e.

Vfig € Le(EF), (Ifogll <IfI-lgll-

Preuve —

() D’apres le théoreme 37, si f € L(E, F), alors il existe un réel K tel que Va € E, ||f(z)|| < K||z||. Par suite, pour tout

o 20, @I _ ‘f( )
] El

(¢¢) Soient f,g € L.(E, F). On vérifie les troix axiomes de la définition 1
— Soit z € E. Si ||f]| =0, alors || f(z)|| < 0]|z|| = 0. D’ou f(z) = 0. C’est vrai pour tout z € E, donc f = 0.

— Soit a € K: |laf]| = e laf (@) = laf e £ @) = [edIlF1-

— Soit x € E: ||f(2) + g@)Il < If @) +1lg@)| < AWMzl + lgllizll < AL+ Ngl) llz]l. Or [If + gl est le plus
petit réel vérifiant cette inégalité, il est donc inférieur a || f|| + |lg]l-

Et cette norme est sous-multiplicative car : Vo € E, |[f o g()[| = [If (¢9(=)) | < £ - lg) | < W1 - Nallll=]l-

est majoré. Et le plus petit majorant est donc égal aux deux sup.

Or || f o g| est le plus petit réel vérifiant cette propriété, il est donc inférieur a || f] - llgll-

O

Les définition, notation et propriétés sont les mémes si on remplace une application linéaire continue f
par une matrice A.

EXEMPLE 45 — On munit l'ev My,1(R) de la norme définie par : || X||coc = max |z;| pour tout vecteur
<j<n

colonne X = (x;)jeq,n]- Soit A € Myp1(R) une matrice carrée :

VX € Mpyi(R), |AX oo < K || X |00, avec K = max Z |aij].

1<i<n
Preuve — [|AX]|oo = max 21“ . Orvie[1n], le < Zliauule < leaul 1X oo < K X[ O
= J J J

Ce réel K est le plus petit qui vérifie cette inégalité car 3X # 0, ||AX|loo = K * [| X co-
n
Preuve — Il existe une ligne k € [1,n] telle que K = Z lag;|. Pour chaque j € [1,n], posons x; = +1 siag; >0 et x; = —1
j=1
n
si ag; < 0. Pour ce vecteur X, d'une part ||AX|lco = Z lag;| = K et d’autre part || X||co = 1. Donc [|[AX ||oo = K - || X||oo-
j=1
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n

On en déduit que | ||Allcc = max E lai;]|
1<i<n 4 7
j:

EXERCICE 46 — Soit n € N*. On munit l'ev E = M,,,,(K) d’une norme sous-multiplicative. Montrer que,

pour tout k € N* et pour toutes matrices M et H de F,

(M + H)* = M*|| < (IM] + [ H[)* — [[M]]*.

Qu’en déduire ?

XI.10 OQUVERTS ET FERMES

DEFINITION 47
Soit A une partie d'un espace vectoriel normé. On dit que :

1. un point a € E est intérieur a A si 3¢ > 0, B(a,¢) C A.
2. A est un ouvert ou une partie ouverte de E'si Va € A, 3¢ >0, B(a,e) C 4;
3. A est un fermé ou une partie fermée de E si son complémentaire £\ A est un ouvert de E.

FIGURE XI.5 — A EST UN OUVERT DE E <= TOUT POINT a DE A EST INTERIEUR A A.

REMARQUE 48 — 1. L’intersection d’une famille d’ouverts n’est pas toujours un ouvert.

Voici tre- le: n |-+ +1={0}.
oici un contre-exemple neN*] =, +[= {0}
. L’union d’une famille de fermés n’est pas toujours un fermé.
Voici tre- le: U [-1+11-1)=]-1,+1]
oici un contre-exemple neN*[ + 2, =] =] 1]
. La réunion d’une famille d’ouverts est toujours un ouvert. L’intersection d’une famille de fermés est
toujours un fermé.

Preuve — Soit (A;)icr une famille d’ouverts. On veut montrer que l'union A = |J A; est un ouvert. Soit x € A.
i€l

Alors x appartient ¢ au moins un A;. Or cet A; est un ouvert. D’ou il existe une boule B(x,e) C A;. D’ou B(z,e) C A.
Donc A est un ouvert. Pour l'intersection des fermés, on passe au complémentaire... O
. L’intersection d’une famille finie d’ouverts est un ouwvert. L’union d’une famille finie de fermés est
un fermé.

Preuve — Soit (A;)icr une famille finie d’ouverts A;. On veut montrer que l'intersection A = (| A; est un ouvert.

el
Soit x € A. Alors x appartient & chaque A;. Or chaque A; est un ouvert, d’ou il existe une boule B(xz,e;) C A;. Soit
€= r_ni? €i. Alors e > 0 car I est fini. Et B(z,¢) est incluse dans chaque A;, d’ot B(z,e) C A. Donc A est un ouvert.
1€ I

Pour lunion finie des fermés, on passe au complémentaire... O
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EXERCICE 49 — Soient a et b deux réels tels que a < b. Montrer que :
1. les intervalles | — 0o, b[ , |a,b| et ]a,4o0[ sont des ouverts de R ;
2. les intervalles | — 00,b] , [a,b] et [a,4+oc[ sont des fermés de R ;
3. Uintervalle [a,b] n’est ni ouvert ni fermé.

ProproOSITION 50
Soient E et F deux espaces vectoriels normés. Soit une application f : E — F, x — f(x) continue.

Si B est un ouvert (respectivement un fermé) de F, alors f~!(B) est un ouvert (respectivement un
fermé) de E.

Autrement dit : I'image réciproque d'un ouvert (respectivement d'un fermé) par une application continue
est un ouvert (respectivement un fermé).

Preuve — Sot a € f~1(B). Alors f(a) € B.
Or B est un ouvert de F, d’ot 3¢ > 0, B(f(a),e) C B.
Or f est continue, d’ott 36 > 0, |z —al <6 = ||f(z) — f(a)|| <e.
D’ott B(a,d) C f~1(B). Donc f~1(B) est un ouvert de E.

De méme pour un fermé en utilisant f~1(F\ B) = E\ f~1(B) : I'image réciproque du complémentaire est égale au

complémentaire de ’image réciproque. O

EXERCICE 51 — Soit f : E — R une application continue d’un evn E vers R. Montrer que :
1. Uensemble {x € E | f(x) > 0} des solutions de Uinéquation f(x) > 0 est un ouvert de E ;
2. Uensemble {x € E | f(x) > 0} des solutions de inéquation f(z) > 0 est un fermé de E;
3. Uensemble {x € E | f(x) = 0} des solutions de "équation f(x) =0 est un fermé de E.

EXEMPLE 52 — Soit E un evn. Toute boule ouverte est un ouvert, toute boule fermée est un fermé et
toute sphere est un fermé.

Preuve — La boule B(a, R) centrée en a € E et de rayon R > 0 est [’ensemble des solutions de l’inéquation ||z — a|| < Rqui
équivaut & R — ||z — al| > 0. Or la fonction f : E — R, z — R — ||z — al|| est continue, donc B(a,R) ={z € E | f(z) > 0}
est un ouvert de E.

De méme, B(a,R) = {z € E | f(x) > 0} est un fermé de E.

De méme, B(a,R) = {z € E | f(x) = 0} est un fermé de E. O

EXERCICE 53 — Soit E un evn de dimension finte. Montrer que tout hyperplan de E est un fermé.

PRrROPOSITION 54
Soit A une partie d'un espace vectoriel normé E.
1. Son adhérence A est un fermé de E.
2. Aestunferméde E ssi A= A.
3. (caractérisation séquentielle d'un fermé) A est un fermé de E si, et seulement si, a chaque fois qu'une
suite (u,) d'éléments de A converge, la limite de (u,,) appartient a A.

Preuve —
1. On veut montrer que E\ A est un ouvert de E. Soit € E'\ A. Alors il existe une boule B(z, €) telle que B(z,e)NA = 0.
Chaque vecteur de cette boule B(x,¢) appartient aussi & E \ A. D’ott B(z,¢) C E\ A. Donc E \ 4 est un ouvert de E.
2. Si A= A, alors A est un fermé car A est un fermé. Réciproquement : supposons que A est un fermé (alors E \ A est
un ouvert). On veut montrer que A C A.

Soit z € A. Alors Ve >0, B(z,e)NA#0. Doux ¢ E\ A. (Par Pabsurde : si € E \ A alors il existe une boule
B(z,e) C E\ A car E\ A est un ouvert.) D’olt z € A. Donc A C A.
3. Utiliser la caractérisation séquentielle de ’adhérence (proposition 23).
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