Colle 12 Produits scalaires

CAROFF Valentin

Exercice 1. Sur I'espace vectoriel E = C%([0,1],R) on définit le produit scalaire

1
Vf,ge E, < f,g >= /0 f(t)g(t)dt

1. Montrer qu'’il existe une famille (P, ),en de polynémes vérifiant

1 sim=
VnGN,deanneth,nEN,<Pm,Pn>{ stme=n

0 sinon

2. On fixe n dans N. Montrer que le polynéme P,, admet exactement n racines distinctes dans l'inter-
valles ]0, 1] que l'on énumere : wy, ..., w,.

3. On pose, pour tout f € F,
1 n
B(f)= [ f@ydt =3 Aufn)
0 k=1

avec les \g réels a déterminer. Montrer qu’il est possible de choisir les A\; de maniére a ce que, pour
tout polyndéme P de degré strictement inférieur & n, on ait E(P) = 0.
Hint : on pourra utiliser les polynémes interpolateurs de Lagrange appliqués au systéme de racines.

4. Pour les Ay choisis ci-dessus, montrer que 'on a en fait E(P) = 0 pour tout polynéme P de degré
strictement inférieur a 2n. On pourra faire une division euclidienne de P par P,.

5. Que se passe-t-il si P est de degré 2n?



Solution 1.

1. Le procédé d’orthonormalisation de Gram-Schmidt appliqué a la base canonique (1,X,---  X™)
de R,[X] nous donne lexistence d’une famille (Po,---,P,) telle que pour tout k € [0,n], Py €
Vect(1,---, X*). Ce qui est exactement ce que l’on nous demandait.

2. On en déduit que pour tout k € [1,n], P, € Ry_1[X]*.

1
Supposons que P, posséde r racines de multiplicité impaires a1, ...,a,. €]0,1[. Alors / Py (t) H(tf
0 N

r

o) dt =< Py, H(X—ozi) =0 sir < k. Mais par construction Py [[;_, (X —a;) est de signe constant.

i=1
Ce qui est absurde, car Py, # 0. Doncr = k et Py, est simplent scindé dans|—1, 1] pour tout k € N*.

3. Soit L; le i-eme polyndme interpolateur de Lagrange associé a (wy,--- ,wy). Alors tout olyndme P
de degré strictement inférieur a n s’écrit dans la base L; :

i=1

1
et donc si A\, = / Ly (t) dt, on obtient la formule attendue.
0

4. Si deg P < 2n, alors on fait la division de P par P, : P = Q, P, + R,, avec deqR,, <n.
1
On en déduit que < P,1 >=< P,,Q, >+ < R,,1 >= / R, (t)dt.
0
De plus, Rw;) = P(w;) e donc

1 n
/ Pt dt =3 Aeflwn).
0 k=1

St degp = 2n, on reprend la division euclideinne P = Qn P, + R,,. Si a, est le coefficient dominant
de P, et si ag, est le coefficient dominant de P, alors

Qn = aﬂPn + terme de degré <n

n

a

et donc < Q,, P, >= —=n (| P I?.
Qo

Ainsi,

1 n
A2n, 2
P = P, P .
/O (t)dt o 1Pall® + > A Plwr)

k=1



HAMON Arthur

Exercice 2. Soit L une forme linéaire sur C[X]. On dit qu’une suite (P, )neny d’éléments de C[X] est
orthogonale par rapport a L si et seulement si :

Vn € N, deg(P,) = n, ¥Y(m,n) € N*, m #n = L(P,P,) =0, Yn €N, L(P%) #0.

1. Dans cette question, on suppose qu’il existe (P, )nen orthogonale par rapport a L.
i) Montrer que : Vn € N*, VP € C,,_1[X], L(P,P) = 0.

ii) Soit R € C[X] tel que pour tout S € C[X] de degré inférieur ou égal a deg R, L(RS) = 0.
Montrer que R = 0.

iii) Montrer qu’il existe une unique suite de polynoémes unitaires orthogonale relativement & L.
Mo - Hn
2. Pour k € N, on note u, = L(X*) et on pose pour tout n € N, A,, = : |. On suppose

Hn Han
qu’il existe (P, )nen orthogonale pour L.
i) Montrer que A,, # 0.

ii) Etablir la réciproque et montrer que, pour tout n € N*, le coefficient dominant de P,, est égal
a L(X"P,)An_1/A,.



Solution 2. (P,Q) — L(P,Q) est une forme bilinéaire symétrique. On dira que P et Q sont orthogonaux
st L(PQ) =0.

1. (i) Pour tout n € N, la famille (Py, P,,) est échelonnée en degré et donc est une base de C,[X].
Comme par hypothése, P, est orthogonale a une base de C,_1[X], on en déduit que P, est
orthogonal a tout polynome de degré au plus n — 1.

d
(i) Si R de degré d > 0, R s’écrit Z%‘Pi- Mais alors L(RP;) = 0, et donc ag = 0, ce qui

i=0
contredit R de degré d > 0. Donc R = 0.

(i1i) Quitte & diviser P, par son coeffcient dominant, on peut supposer la suite (Py,) unitaire or-
thogonale. S’il en exsite une seconde, alors (P, — Q) est encore orthogonale ¢ C,_1[X] et est
de degré n — 1, ce qui montre que P, = Q..

2. On remarque que la matrice proposée s’écrit A, = (L(Xin))Ogi,jgn’ c’est-a-dire est la matrice

dans la base canonique L restreinte a R, [X]? :
ao\ " bo

L(PaQ): An : 3

n n
avec P = ZaiXi et Q = ZbiXi.

i=0 i=0
Si le noyau de A était non nulle, on obtiendrait un polynome orthogonal a tous les autres, mais on
a montré que seul le polynome nul convient, donc on a obtenu l’exsitence.

d
Réciproquement, si le déterminant est non nul, alors pour tout polynome P = Z ap X" de degré d,
k=0
Qo ao
L(PP)= | : | Aa| ¢ | #0.
aq aq

") donne la famille

L’algorithme de Gram-Schmidt appliqué & partir de la famille (1, X,--- | X
P, : on pose
L(X™P,_1)

L(P;_y)

L(X"Py)

Py = X" —
i L(P})

P qg——

De plus, si P, = Zaka, alors pour tout k € [0,n]
k=0
n
L(PoX") =Y a; LX) = 6,k L(X™ Py)
i=0

On en déduit qu’en remplacant la derniére colonne C,, de la matrice par ZakC’k on obtient

k=0
Mo Tt Mn—1 L(l X Pn) Ho tee Mn—1 O
anl, = S o= L | = L(X"P)A,
Pn—1 - pon—2 L(X"T'P,) Hn—1 - H2op—2 0
Hn o H2n—1 L(ann) Hn o H2n—1 L(XnPn)



MOREL Jules

Exercice 3. Soient (F,( | )) un R-espace vectoriel euclidien de dimension finie n > 1 et E* = L(E,R)
I'espace des formes linéaires sur F.

1. Quelle est la dimension de E* 7

2. Montrer que si p € E*, alors il existe un unique vecteur a € E, tel que Vz € E, ¢(x) = (alx).

3. Soit (¢1,- -, ¢y) une famille de E*. Pour tout ¢ € [1,n], on pose a; € E 'unique vecteur a; tel que
o(xz) = (a;]x) et soit f: E = R™ x> (d1(x), -+, dn(x)).
(a) Montrer que (¢1,- -+, ¢y,) est une base de E ssi (a1, -+ ,a,) est une base de E.

(b) Si (¢1,--+,¢n) une base de E*. Montrer qu'il existe une base (e1, - ,e,) de E telle que :
V(Z,]) S {17 v 7”}2a ¢i(6j) = 6i,j~

4. Si ¢1 , ¢2 € E*, on définit Vapplication ¢1 A ¢a : (x,y) — ¢1(2)P2(y) — ¢1(y)d2(x). Montrer que
@1 N\ ¢ est une forme bilinéaire antisymétrique.

5. Si (¢1,- -+ ,¢p) est une famille libre de E*, montrer que la famille (¢; A ¢;)1<i<j<p est libre.

Solution 3.
1. L’espace E* est défini par E* = L(E,R). Puisque E est de dimension finie n, on a :

dim(E*) = dim(F) x dim(R) =n x 1 =n.

2. Soit Uapplication © : E — E* définie par ©(a) = @, ot Vx € E, pq(x) = (a|z).
— Linéarité : L’application est linéaire par linéarité a gauche du produit scalaire.
VYA € R,Y(a,b) € B2, O(X\a+b) = \O(a) + O(b).
— Injectivité : Soit a € ker(0). Alors pour tout © € E, (alx) = 0. En particulier pour z = a,
on a (ala) = ||la||> =0, donc a = 0g. Ainsi ker(©) = {0g}.

— Bijectivité : O est une application linéaire injective entre deux espaces de méme dimension
finie n. Elle est donc bijective.

Conclusion : Pour tout p € E*, il existe un unique vecteur a = ©~(p) tel que Vx € E,p(z) =
(alz).

3. L’application © étant un isomorphisme de E vers E*, elle transforme toute base de l’espace de
départ en une base de l’espace d’arrivée.



(a) Si(a;); est une base de E, alors (0(a;)); = (¢i); est une base de E*.
Réciproquement, si (¢;); est une base de E*, alors (©71(¢;)); = (a;); est une base de E.

Ainsi, (¢1,...,0n) est une base de E* si et seulement si (a1,...,a,) est une base de E.
(b) Supposons que (P1,...,d,) soit une base de E*. Considérons 'application linéaire :
vV:E—R"

Injectivité : Si U(x) = Ogn, alors Vi € [1,n], ¢;(x) = 0. Avec les notations de la question

précédente, x serait orthogonal & la base (ay,- -+ ,a,). Donc x = 0p.
Bijectivité : U est injective entre deux espaces de méme dimension n, donc bijective.
Soit (€1,...,en) la base canonique de R™. On définit la famille (1, ..., e,) par e; = U1 (g;).

Par construction, U(e;) = ¢;, ce qui signifie exactement :
Vi, ¢i(ej) = (€5)i = bij-
L’image réciproque d’une base par un isomorphisme étant une base, (e1,...,e,) est bien une
base de E.
(c) Facile
4. Soit (¢1,...,¢p) une famille libre de E*. D’aprés le résultat de la question 3.b (appliqué au sous-
espace engendré ou en complétant la famille en une base de E*), il existe une famille (eq,...,ep)
de E telle que ¢;(ej) =9, ;.
Soient des scalaires (\; j)1<i<j<p tels que :

Z Aii(¢i A ¢5) = 0.

1<i<j<p

Evaluons cette somme sur un couple de vecteurs (ex,e;) avec 1 <k <1 <p.

> iy (iler)i(er) — diler)dj(ex)) = 0.
1<i<j<p
OT; ¢u(ev) = 5u,v'
— Le terme ¢;(ex)p;(er) est non nul (et vaut 1) si et seulement sii =4k et j =1.
— Le terme ¢;(e;)¢;(er) est non nul (et vaut 1) si et seulement sii =1 et j=k.

Dans la somme, les indices vérifient la condition stricte © < j. Puisque nous avons choisi k <, le
couple (i,7) = (k,1) apparait dans la somme, mais le couple (i,j) = (I, k) n’y apparait pas.
Il ne reste donc que le terme correspondant a i =k et j =1 :

)\k,lX(IXI—O):O = A =0.

Ceci étant vrai pour tout couple (k,1) tel que k < 1, la famille est libre.



