
Colle 12 Produits scalaires

CAROFF Valentin

Exercice 1. Sur l’espace vectoriel E = C0([0, 1],R) on définit le produit scalaire

∀f, g ∈ E, < f, g >=

∫ 1

0

f(t)g(t) dt

1. Montrer qu’il existe une famille (Pn)n∈N de polynômes vérifiant

∀n ∈ N,degPn = n et ∀m,n ∈ N, < Pm, Pn >=

{
1 si m = n

0 sinon

2. On fixe n dans N. Montrer que le polynôme Pn admet exactement n racines distinctes dans l’inter-
valles ]0, 1[ que l’on énumère : ω1, . . . , ωn.

3. On pose, pour tout f ∈ E,

E(f) =

∫ 1

0

f(t) dt−
n∑

k=1

λkf(ωk)

avec les λk réels à déterminer. Montrer qu’il est possible de choisir les λk de manière à ce que, pour
tout polynôme P de degré strictement inférieur à n, on ait E(P ) = 0.
Hint : on pourra utiliser les polynômes interpolateurs de Lagrange appliqués au système de racines.

4. Pour les λk choisis ci-dessus, montrer que l’on a en fait E(P ) = 0 pour tout polynôme P de degré
strictement inférieur à 2n. On pourra faire une division euclidienne de P par Pn.

5. Que se passe-t-il si P est de degré 2n ?
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Solution 1.

1. Le procédé d’orthonormalisation de Gram-Schmidt appliqué à la base canonique (1, X, · · · , Xn)
de Rn[X] nous donne l’existence d’une famille (P0, · · · , Pn) telle que pour tout k ∈ [[0, n]], Pk ∈
Vect(1, · · · , Xk). Ce qui est exactement ce que l’on nous demandait.

2. On en déduit que pour tout k ∈ [[1, n]], Pk ∈ Rk−1[X]⊥.

Supposons que Pn possède r racines de multiplicité impaires α1, ...,αr ∈]0, 1[. Alors

∫ 1

0

Pk(t)

r∏
i=1

(t−

αi) dt =< Pk,

r∏
i=1

(X−αi) = 0 si r < k. Mais par construction Pk

∏r
i=1(X−αi) est de signe constant.

Ce qui est absurde, car Pk 6= 0. Donc r = k et Pk est simplent scindé dans ]−1, 1[ pour tout k ∈ N∗.
3. Soit Li le i-ème polynôme interpolateur de Lagrange associè à (w1, · · · , wn). Alors tout olynôme P

de degré strictement inférieur à n s’écrit dans la base Li :

P =

n∑
i=1

P (wi)Li

et donc si λk =

∫ 1

0

Lk(t) dt, on obtient la formule attendue.

4. Si degP < 2n, alors on fait la division de P par Pn : P = QnPn +Rn, avec deqRn < n.

On en déduit que < P, 1 >=< Pn, Qn > + < Rn, 1 >=

∫ 1

0

Rn(t) dt.

De plus, R(wi) = P (wi) e donc ∫ 1

0

f(t) dt =

n∑
k=1

λkf(ωk).

Si deg p = 2n, on reprend la division euclideinne P = QnPn +Rn. Si αn est le coefficient dominant
de Pn et si a2n est le coefficient dominant de P , alors

Qn =
a2n
αn

Pn + terme de degré < n

et donc < Qn, Pn >=
a2n
αn
‖Pn‖2.

Ainsi, ∫ 1

0

P (t) dt =
a2n
αn
‖Pn‖2 +

n∑
k=1

λkP (ωk).
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HAMON Arthur

Exercice 2. Soit L une forme linéaire sur C[X]. On dit qu’une suite (Pn)n∈N d’éléments de C[X] est
orthogonale par rapport à L si et seulement si :

∀n ∈ N, deg(Pn) = n, ∀(m,n) ∈ N2, m 6= n⇒ L(PmPn) = 0, ∀n ∈ N, L(P 2
n) 6= 0.

1. Dans cette question, on suppose qu’il existe (Pn)n∈N orthogonale par rapport à L.

i) Montrer que : ∀n ∈ N∗, ∀P ∈ Cn−1[X], L(PnP ) = 0.

ii) Soit R ∈ C[X] tel que pour tout S ∈ C[X] de degré inférieur ou égal à deg R, L(RS) = 0.
Montrer que R = 0.

iii) Montrer qu’il existe une unique suite de polynômes unitaires orthogonale relativement à L.

2. Pour k ∈ N, on note µk = L(Xk) et on pose pour tout n ∈ N, ∆n =

∣∣∣∣∣∣∣
µ0 · · · µn

...
. . .

...
µn ... µ2n

∣∣∣∣∣∣∣. On suppose

qu’il existe (Pn)n∈N orthogonale pour L.

i) Montrer que ∆n 6= 0.

ii) Établir la réciproque et montrer que, pour tout n ∈ N∗, le coefficient dominant de Pn est égal
à L(XnPn)∆n−1/∆n.

3



Solution 2. (P,Q) 7→ L(P,Q) est une forme bilinéaire symétrique. On dira que P et Q sont orthogonaux
si L(PQ) = 0.

1. (i) Pour tout n ∈ N, la famille (P0, Pn) est échelonnée en degré et donc est une base de Cn[X].
Comme par hypothèse, Pn est orthogonale à une base de Cn−1[X], on en déduit que Pn est
orthogonal à tout polynôme de degré au plus n− 1.

(ii) Si R de degré d ≥ 0, R s’écrit

d∑
i=0

αiPi. Mais alors L(RPd) = 0, et donc αd = 0, ce qui

contredit R de degré d ≥ 0. Donc R = 0.

(iii) Quitte à diviser Pn par son coeffcient dominant, on peut supposer la suite (Pn) unitaire or-
thogonale. S’il en exsite une seconde, alors (Pn−Qn) est encore orthogonale à Cn−1[X] et est
de degré n− 1, ce qui montre que Pn = Qn.

2. On remarque que la matrice proposée s’écrit An =
(
L(XiXj)

)
0≤i,j≤n, c’est-à-dire est la matrice

dans la base canonique L restreinte à Rn[X]2 :

L(P,Q) =

a0...
an


T

An

b0...
bn

 ,

avec P =

n∑
i=0

aiX
i et Q =

n∑
i=0

biX
i.

Si le noyau de A était non nulle, on obtiendrait un polynôme orthogonal à tous les autres, mais on
a montré que seul le polynôme nul convient, donc on a obtenu l’exsitence.

Réciproquement, si le déterminant est non nul, alors pour tout polynôme P =

d∑
k=0

akX
k de degré d,

L(PP ) =

a0...
ad

Ad

a0...
ad

 6= 0.

L’algorithme de Gram-Schmidt appliqué à partir de la famille (1, X, · · · , Xn, · · · ) donne la famille
Pn : on pose

Pn+1 = Xn+1 − L(XnPn−1)

L(P 2
n−1)

Pn−1 − · · · −
L(XnP0)

L(P 2
0 )

.

De plus, si Pn =

n∑
k=0

akX
k, alors pour tout k ∈ [[0, n]]

L(PnX
k) =

n∑
i=0

aiL(Xi+k) = δn,kL(XnPn)

On en déduit qu’en remplaçant la dernière colonne Cn de la matrice par
n∑

k=0

akCk on obtient

an∆n =

∣∣∣∣∣∣∣∣∣
µ0 · · · µn−1 L(1× Pn)
...

. . .
...

...
µn−1 ... µ2n−2 L(Xn−1Pn)
µn · · · µ2n−1 L(XnPn)

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
µ0 · · · µn−1 0
...

. . .
...

...
µn−1 ... µ2n−2 0
µn · · · µ2n−1 L(XnPn)

∣∣∣∣∣∣∣∣∣ = L(XnPn)∆n−1
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MOREL Jules

Exercice 3. Soient (E, ( | )) un R-espace vectoriel euclidien de dimension finie n ≥ 1 et E∗ = L(E,R)
l’espace des formes linéaires sur E.

1. Quelle est la dimension de E∗ ?

2. Montrer que si ϕ ∈ E∗, alors il existe un unique vecteur a ∈ E, tel que ∀x ∈ E, ϕ(x) = (a|x).

3. Soit (φ1, · · · , φn) une famille de E∗. Pour tout i ∈ [[1, n]], on pose ai ∈ E l’unique vecteur ai tel que
ϕ(x) = (ai|x) et soit f : E → Rn, x 7→ (φ1(x), · · · , φn(x)).

(a) Montrer que (φ1, · · · , φn) est une base de E ssi (a1, · · · , an) est une base de E.

(b) Si (φ1, · · · , φn) une base de E∗. Montrer qu’il existe une base (e1, · · · , en) de E telle que :

∀(i, j) ∈ {1, · · · , n}2, φi(ej) = δi,j .

4. Si φ1 , φ2 ∈ E∗, on définit l’application φ1 ∧ φ2 : (x, y) 7→ φ1(x)φ2(y) − φ1(y)φ2(x). Montrer que
φ1 ∧ φ2 est une forme bilinéaire antisymétrique.

5. Si (φ1, · · · , φp) est une famille libre de E∗, montrer que la famille (φi ∧ φj)1≤i<j≤p est libre.

Solution 3.

1. L’espace E∗ est défini par E∗ = L(E,R). Puisque E est de dimension finie n, on a :

dim(E∗) = dim(E)× dim(R) = n× 1 = n.

2. Soit l’application Θ : E → E∗ définie par Θ(a) = ϕa où ∀x ∈ E,ϕa(x) = (a|x).

— Linéarité : L’application est linéaire par linéarité à gauche du produit scalaire.

∀λ ∈ R,∀(a, b) ∈ E2, Θ(λa+ b) = λΘ(a) + Θ(b).

— Injectivité : Soit a ∈ ker(Θ). Alors pour tout x ∈ E, (a|x) = 0. En particulier pour x = a,
on a (a|a) = ‖a‖2 = 0, donc a = 0E. Ainsi ker(Θ) = {0E}.

— Bijectivité : Θ est une application linéaire injective entre deux espaces de même dimension
finie n. Elle est donc bijective.

Conclusion : Pour tout ϕ ∈ E∗, il existe un unique vecteur a = Θ−1(ϕ) tel que ∀x ∈ E,ϕ(x) =
(a|x).

3. L’application Θ étant un isomorphisme de E vers E∗, elle transforme toute base de l’espace de
départ en une base de l’espace d’arrivée.
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(a) Si (ai)i est une base de E, alors (Θ(ai))i = (φi)i est une base de E∗.
Réciproquement, si (φi)i est une base de E∗, alors (Θ−1(φi))i = (ai)i est une base de E.
Ainsi, (φ1, . . . , φn) est une base de E∗ si et seulement si (a1, . . . , an) est une base de E.

(b) Supposons que (φ1, . . . , φn) soit une base de E∗. Considérons l’application linéaire :

Ψ : E −→ Rn

x 7−→ (φ1(x), . . . , φn(x))

Injectivité : Si Ψ(x) = 0Rn , alors ∀i ∈ [[1, n]], φi(x) = 0. Avec les notations de la question
précédente, x serait orthogonal à la base (a1, · · · , an). Donc x = 0E.
Bijectivité : Ψ est injective entre deux espaces de même dimension n, donc bijective.
Soit (ε1, . . . , εn) la base canonique de Rn. On définit la famille (e1, . . . , en) par ej = Ψ−1(εj).
Par construction, Ψ(ej) = εj, ce qui signifie exactement :

∀i, φi(ej) = (εj)i = δi,j .

L’image réciproque d’une base par un isomorphisme étant une base, (e1, . . . , en) est bien une
base de E.

(c) Facile

4. Soit (φ1, . . . , φp) une famille libre de E∗. D’après le résultat de la question 3.b (appliqué au sous-
espace engendré ou en complétant la famille en une base de E∗), il existe une famille (e1, . . . , ep)
de E telle que φi(ej) = δi,j.

Soient des scalaires (λi,j)1≤i<j≤p tels que :∑
1≤i<j≤p

λi,j(φi ∧ φj) = 0.

Évaluons cette somme sur un couple de vecteurs (ek, el) avec 1 ≤ k < l ≤ p.∑
1≤i<j≤p

λi,j (φi(ek)φj(el)− φi(el)φj(ek)) = 0.

Or, φu(ev) = δu,v.

— Le terme φi(ek)φj(el) est non nul (et vaut 1) si et seulement si i = k et j = l.

— Le terme φi(el)φj(ek) est non nul (et vaut 1) si et seulement si i = l et j = k.

Dans la somme, les indices vérifient la condition stricte i < j. Puisque nous avons choisi k < l, le
couple (i, j) = (k, l) apparait dans la somme, mais le couple (i, j) = (l, k) n’y apparait pas.

Il ne reste donc que le terme correspondant à i = k et j = l :

λk,l × (1× 1− 0) = 0 =⇒ λk,l = 0.

Ceci étant vrai pour tout couple (k, l) tel que k < l, la famille est libre.
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