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Produits scalaires
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Exercice 1. On munit 'ev E = C ([-1,1],R) du produit scalaire défini par

1
(f1g) = / Fgte)ae

F={feE|Vte[-1,0],f(t)=0} et G={g€ E|Vte[0,1],9(t) =0}.

sont-ils orthogonaux ? supplémentaires 7
2. F+ est-il égal & G ? (F1)* est-il égal & F'?

1. Les sev

1. Par construction, pour tout (f,g) € F x G, f(t)g(t) = 0 pout tout t € [—1,+1], d’out {f, g) = 0. Les sev F et G sont donc
orthogonaux mails ils ne sont pas supplémentaires car leur somme F' + G n’est pas égale a E car la fonction constante 1
appartient & E mais pas & F' + G car elle ne s’annule pas en 0.

2. De F L G, on déduit que G C F+ > proposition 17 du chapitre VIIL. Reste & prouver l'inclusion F+ C G : soit g € F-L.
Alors (f,g) = 0 pour tout f € F.

0site[-1,0]

Soit , en particulier, f(t) = -
tg(t) sinon

(c’est la méme idée que dans > l’exo 8 du TD n°8). Par construction,

f € Fcar f(t) =0sit e [—1,0] et la fonction f est continue sur [—1,+1] car c’est le produit des deux fonctions g et

. {0 site[—1,0]

K qui sont bien continues.
t sinon

De 0= (f,9) fo tg%(t) dt = 0, on déduit que Vt € [0, 1], tg(t) = 0 d’apres le théoreme de I'intégrale nulle car la fonction
[0,1] = R, t+— tg?(t) est continue et positive. D’olt Vt G]O, 1], g(¢) = 0. Et le réel g(0) est aussi nul par continuité de la
fonction g. D’ou g € G.

Donc F* est inclus dans G et finalement égal & G. De méme que F- = G, on peut prouver que G+ = F. Donc (Fl) =F.

REMARQUE — Un exemple de sev F' d’un espace préhilibertien E tel que :
— F et FL ne sont pas supplémentaires et (FJ-)L = F est donné par cet exo;
— F et FL ne sont pas supplémentaires et (FL)L # F est donné par > I’exo 7 du TD n°8.

Dans le chapitre VIII, le corollaire 23 montre que : si F' et F- sont supplémentaires, alors (FJ')J' =F.

Exercice 2.

1. Montrer que

/ﬂ/zf(t dt+/ f'@®)g' (t)dt

définit un produit scalaire sur I'espace vectoriel E = C1([0,7/2]).
2. Montrer que les sous-espaces vectoriels

F={fec*(0,x/2))| f"~f=0} et G={feE]|f(0)=f(n/2)=0}

sont orthogonaux.



3. Déterminer une base du sous-espace vectoriel F' et montrer que les sous-espaces vectoriels F' et G sont
supplémentaires.

4. Soient deux réels a et 8. Soit E(a, ) = {f € E | f(0) = a et f(7w/2) = B}. Montrer que toutes les
fonctions de E(a, 8) ont le méme projeté orthogonal sur F. Quel est-il 7 En déduire

m/2
inf / (O + (1)) dr.

fEE(a,B)

1. La forme (-,-) est symétrique, bilinéaire et positive. Elle est aussi définie car
w/2
(r.h=0= [T wyd—0 — vee 1,1 £() =0
0

d’apres le théoreme de l'intégrale nulle car la fonction ¢ — f2(t) est positive et continue.

2. Soit (f,g) € F x G : alors (f,g) = f07r/2 fa+ foﬂ/2 f'g’ = 0 car les fonctions f’ et g sont de classe C!, d’ot1, en intégrant
par parties, 07(/2 'y = [f’g}g/2 - 07(/2 f"g.Or f”" = —fcar f € F et [f’g}g/2 =0car g€ G.

3. Les deux fonctions t — e’ et t — e~ ! forment une base de 1’ev F' des solutions de ’équation différentielle f/ — f = 0
linéaire d’ordre 2 sans second membre. Montrons que les sev F' et G sont supplémentaires dans E, par analyse-synthese.
ANALYSE — Soit h € E. Si (f,g9) € F x G et h = f + g, alors 3(a,b) € R2, Vt € [0,7/2], f(t) = aet +be~t. Or h(0) = f(0)

a+b=h(0)

et h(mw/2) = f(mw/2), d’ou (a,b) est 'unique solution du systeéme (x) ae™/? + be—7/2 = h(r/2)

.Et g=h— f. Dou
P'unicité de f et de g.

SYNTHESE — Soit V¢ € [0,1], f(t) = ae’ + be™t, ol (a,b) est I'unique solution du systéeme (x). Soit g = h — f. Alors f € I,
g € Get f+g=h, dou lexistence de f et de g.
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at+b=«

: . t —t : N
/2 4 b2 = La fonction f : t + ae® 4+ be™" appartient & F N E(a, B)

4. Soit (a,b) I'unique solution du systéme {

(voir la figure 1). Et, pour toute fonction h € E(a,8), h — f € G car {Zé?r)ﬂ) f_((})(:/;);aﬂz_()ﬁ iy

projeté orthogonal de toutes les fonctions h € E(a, 8). Donc infj,¢ p(a,8) fJ/Q ([R(D)]2 + [R'(1)]2) d = || fII*.

. D’ou f est le

Exercice 3. Soit E un espace euclidien, u un vecteur de FE tel que ||ul] = 1.
Pour chaque réel «, on définit I’endomorphisme ¢, par :

Vo € E, po(z) =z + alz,u)u.

1. Interpréter géométriquement les endomorphismes ¢_1 et p_o.
2. Calculer ¢, o s pour tout (o, 3) € R?.
3. Déterminer un polynéme annulateur de ’endomorphisme .



. Pour quelles valeurs du réel a ’endomorphisme ¢, est-il bijectif ?
. Déterminer les valeurs propres et les sous-espaces propres de I’endomorphisme ¢, . Est-il diagonalisable ?

. L’endomorphisme f : E —, E, x — {(x,u)u est la projection orthogonale sur la droite Vect(u) car le vecteur u est de norme
1. Posons p = p_1 et F' = [Vec‘c(u)}L (voir la figure 2). Alors p = idg — f, donc ¢_1 est le projecteur sur I’hyperplan F
parallelement & la droite Vect(u). Posons s = p_3. Alors idg + s = 2p, donc s est la symétrie par rapport a ’hyperplan F
parallelement & la droite Vect(u).
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. Soitx € E :

va 0 pg(x) = pg(x) + afpg(x), uyu = = + Bz, u)u + oz + Bz, u)u, u)u = x + Bz, w)u + alz, u)u + ab{z, u)(u, u)u
T+ Bz, u)u + afz, w)u + af(z, vpu =z + (a + B + af)(z, Wyu = Patgtas(T)-
. En reprenant le calcul précédent dans le cas particulier o @ = 3, on trouve :
Vo € E, ¢2(z) = (2+ a)pa(z) — (1 + a)z.
Dot 92, = (2 + a)pa — (1 + @)idg. Donc, le polynéme X2 — (2 + @)X + (1 + «) est annulateur de @q.
. Sia= —1, alors p_1 est le projecteur sur F' parallelement & Vect(u), donc n’est pas bijectif car son noyau est Vect(u).

Sinon :

— (METHODE 1) le calcul de la question 2 montre que ¢q © P—a/(l4+a) = dE = ¢_a/(1+a) © Pa, donc que 'endo pa
admet une réciproque, donc qu’il est bijectif;

— (METHODE 2) du polynéme annulateur X2 — (24 a)X + (1 +a) = (X — 1)(X — (1 + a)) trouvé a la question 3, on
déduit que Sp(pa) C {1;1 + a}, ce spectre ne contient pas 0, d’ol I’endo est injectif et, donc bijectif car I'ev E est
de dimension finie..

. Soit z, y € E. On a :

(pal@)ly) = (z+afz,u)uly)
= (zly) + oz, u)(uly)
= (zly) + (z,aluly)u)
= (z,y+a(yluu)
= (z,90a(y))-
. On construit une base adaptée. Le vecteur u est un vecteur propre associé a la valeur propre 1 + «. Si un vecteur x est
orthogonal & u, alors @ (z) = . Soit (€1, ,€n_1) une base de [Vect(u)]t, alors B = (e1,- -+ ,en_1,u) est une base de

l'ev E car Vect(u) @ [Vect(u)]t = E. Cette base est formée de vecteurs propres de @q, donc ¢, est diagonalisable et son
spectre est {1;1 4+ a}.

Si a # 0, alors Ey = [Vect(u)]* et E14q = Vect(u) sont les deux sep de I'endo ¢q. Si a = 0, alors ¢, = idg et E; = E
est I'unique sep.

REMARQUES :



— dans le cas ot a # 0, le polynéme X2 — (2 +a)X + (1 + ) = (X — 1)(X — (1 + «)) est non seulement annulateur de
o mais aussi qu’il est scindé a racines simples, on en déduit que ¢ est alors diagonalisable ;

— du spectre, on déduit que 0O est une valeur propre de @4 si, et seulement si, « = —1. On retrouve ainsi que @, est
bijectif si, et seulement si, o # —1.



