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Exercice 1. On munit l’ev E = C ([−1, 1] ,R) du produit scalaire défini par

⟨f | g⟩ =
∫ 1

−1

f(t)g(t) dt

1. Les sev
F = {f ∈ E | ∀t ∈ [−1, 0] , f(t) = 0} et G = {g ∈ E | ∀t ∈ [0, 1] , g(t) = 0} .

sont-ils orthogonaux ? supplémentaires ?

2. F⊥ est-il égal à G ? (F⊥)⊥ est-il égal à F ?

1. Par construction, pour tout (f, g) ∈ F ×G, f(t)g(t) = 0 pout tout t ∈ [−1,+1], d’où ⟨f, g⟩ = 0. Les sev F et G sont donc
orthogonaux mails ils ne sont pas supplémentaires car leur somme F +G n’est pas égale à E car la fonction constante 1
appartient à E mais pas à F +G car elle ne s’annule pas en 0.

2. De F ⊥ G, on déduit que G ⊂ F⊥ � proposition 17 du chapitre VIII. Reste à prouver l’inclusion F⊥ ⊂ G : soit g ∈ F⊥.
Alors ⟨f, g⟩ = 0 pour tout f ∈ F .

Soit , en particulier, f(t) =

{
0 si t ∈ [−1, 0]

tg(t) sinon
(c’est la même idée que dans � l’exo 8 du TD no 8). Par construction,

f ∈ F car f(t) = 0 si t ∈ [−1, 0] et la fonction f est continue sur [−1,+1] car c’est le produit des deux fonctions g et

t 7→
{
0 si t ∈ [−1, 0]

t sinon
qui sont bien continues.

De 0 = ⟨f, g⟩ =
∫ 1
0 tg2(t) dt = 0, on déduit que ∀t ∈ [0, 1], tg2(t) = 0 d’après le théorème de l’intégrale nulle car la fonction

[0, 1] → R, t 7→ tg2(t) est continue et positive. D’où ∀t ∈]0, 1], g(t) = 0. Et le réel g(0) est aussi nul par continuité de la
fonction g. D’où g ∈ G.

Donc F⊥ est inclus dans G et finalement égal à G. De même que F⊥ = G, on peut prouver que G⊥ = F . Donc (F⊥)⊥ = F .

Remarque – Un exemple de sev F d’un espace préhilibertien E tel que :

— F et F⊥ ne sont pas supplémentaires et
(
F⊥)⊥

= F est donné par cet exo ;

— F et F⊥ ne sont pas supplémentaires et
(
F⊥)⊥ ̸= F est donné par � l’exo 7 du TD no 8.

Dans le chapitre VIII, le corollaire 23 montre que : si F et F⊥ sont supplémentaires, alors
(
F⊥)⊥

= F .

Exercice 2.

1. Montrer que

⟨f, g⟩ =
∫ π/2

0

f(t)g(t) dt+

∫ π/2

0

f ′(t)g′(t) dt

définit un produit scalaire sur l’espace vectoriel E = C1([0, π/2]).

2. Montrer que les sous-espaces vectoriels

F = {f ∈ C2([0, π/2]) | f ′′ − f = 0} et G = {f ∈ E | f(0) = f(π/2) = 0}

sont orthogonaux.



3. Déterminer une base du sous-espace vectoriel F et montrer que les sous-espaces vectoriels F et G sont
supplémentaires.

4. Soient deux réels α et β. Soit E(α, β) = {f ∈ E | f(0) = α et f(π/2) = β}. Montrer que toutes les
fonctions de E(α, β) ont le même projeté orthogonal sur F . Quel est-il ? En déduire

inf
f∈E(α,β)

∫ π/2

0

(
[f(t)]2 + [f ′(t)]2

)
dt.

1. La forme ⟨·, ·⟩ est symétrique, bilinéaire et positive. Elle est aussi définie car

⟨f, f⟩ = 0 =⇒
∫ π/2

0
f2(t) dt = 0 =⇒ ∀t ∈ [−1, 1], f(t) = 0

d’après le théorème de l’intégrale nulle car la fonction t 7→ f2(t) est positive et continue.

2. Soit (f, g) ∈ F ×G : alors ⟨f, g⟩ =
∫ π/2
0 fg +

∫ π/2
0 f ′g′ = 0 car les fonctions f ′ et g sont de classe C1, d’où, en intégrant

par parties,
∫ π/2
0 f ′g′ = [f ′g]

π/2
0 −

∫ π/2
0 f ′′g. Or f ′′ = −f car f ∈ F et [f ′g]

π/2
0 = 0 car g ∈ G.

3. Les deux fonctions t 7→ et et t 7→ e−t forment une base de l’ev F des solutions de l’équation différentielle f ′′ − f = 0
linéaire d’ordre 2 sans second membre. Montrons que les sev F et G sont supplémentaires dans E, par analyse-synthèse.

Analyse – Soit h ∈ E. Si (f, g) ∈ F ×G et h = f + g, alors ∃(a, b) ∈ R2, ∀t ∈ [0, π/2], f(t) = aet + be−t. Or h(0) = f(0)

et h(π/2) = f(π/2), d’où (a, b) est l’unique solution du système (∗)
{
a+ b = h(0)

aeπ/2 + be−π/2 = h(π/2)
. Et g = h − f . D’où

l’unicité de f et de g.

Synthèse – Soit ∀t ∈ [0, 1], f(t) = aet + be−t, où (a, b) est l’unique solution du système (∗). Soit g = h− f . Alors f ∈ F ,
g ∈ G et f + g = h, d’où l’existence de f et de g.
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4. Soit (a, b) l’unique solution du système

{
a+ b = α

aeπ/2 + be−π/2 = β
. La fonction f : t 7→ aet + be−t appartient à F ∩ E(α, β)

(voir la figure 1). Et, pour toute fonction h ∈ E(α, β), h − f ∈ G car

{
h(0)− f(0) = α− α = 0

h(π/2)− f(π/2) = β − β = 0
. D’où f est le

projeté orthogonal de toutes les fonctions h ∈ E(α, β). Donc infh∈E(α,β)

∫ π/2
0

(
[h(t)]2 + [h′(t)]2

)
d = ∥f∥2.

Exercice 3. Soit E un espace euclidien, u un vecteur de E tel que ||u|| = 1.
Pour chaque réel α, on définit l’endomorphisme φα par :

∀x ∈ E, φα(x) = x+ α⟨x, u⟩u.

1. Interpréter géométriquement les endomorphismes φ−1 et φ−2.

2. Calculer φα ◦ φβ pour tout (α, β) ∈ R2.

3. Déterminer un polynôme annulateur de l’endomorphisme φα.



4. Pour quelles valeurs du réel α l’endomorphisme φα est-il bijectif ?

5. Déterminer les valeurs propres et les sous-espaces propres de l’endomorphisme φα. Est-il diagonalisable ?

1. L’endomorphisme f : E →, E, x 7→ ⟨x, u⟩u est la projection orthogonale sur la droite Vect(u) car le vecteur u est de norme

1. Posons p = φ−1 et F = [Vect(u)]⊥ (voir la figure 2). Alors p = idE − f , donc φ−1 est le projecteur sur l’hyperplan F
parallèlement à la droite Vect(u). Posons s = φ−2. Alors idE + s = 2p, donc s est la symétrie par rapport à l’hyperplan F
parallèlement à la droite Vect(u).

u

x

p(x)

ev E
sev F

0E

s(x)

Figure 2 –

2. Soit x ∈ E :

φα ◦ φβ(x) = φβ(x) + α⟨φβ(x), u⟩u = x+ β⟨x, u⟩u+ α⟨x+ β⟨x, u⟩u, u⟩u = x+ β⟨x, u⟩u+ α⟨x, u⟩u+ αβ⟨x, u⟩⟨u, u⟩u
= x+ β⟨x, u⟩u+ α⟨x, u⟩u+ αβ⟨x, u⟩u = x+ (α+ β + αβ)⟨x, u⟩u = φα+β+αβ(x).

3. En reprenant le calcul précédent dans le cas particulier où α = β, on trouve :

∀x ∈ E, φ2
α(x) = (2 + α)φα(x)− (1 + α)x.

D’où φ2
α = (2 + α)φα − (1 + α)idE . Donc, le polynôme X2 − (2 + α)X + (1 + α) est annulateur de φα.

4. Si α = −1, alors φ−1 est le projecteur sur F parallèlement à Vect(u), donc n’est pas bijectif car son noyau est Vect(u).

Sinon :

— (méthode 1) le calcul de la question 2 montre que φα ◦ φ−α/(1+α) = idE = φ−α/(1+α) ◦ φα, donc que l’endo φα

admet une réciproque, donc qu’il est bijectif ;

— (méthode 2) du polynôme annulateur X2 − (2 + α)X + (1 + α) = (X − 1)(X − (1 + α)) trouvé à la question 3, on
déduit que Sp(φα) ⊂ {1; 1 + α}, ce spectre ne contient pas 0, d’où l’endo est injectif et, donc bijectif car l’ev E est
de dimension finie..

5. Soit x, y ∈ E. On a :
⟨φα(x)|y⟩ = ⟨x+ α⟨x, u⟩u|y⟩

= ⟨x|y⟩+ α⟨x, u⟩⟨u|y⟩
= ⟨x|y⟩+ ⟨x, α⟨u|y⟩u⟩
= ⟨x, y + α⟨y|u⟩u⟩
= ⟨x, φα(y)⟩.

6. On construit une base adaptée. Le vecteur u est un vecteur propre associé à la valeur propre 1 + α. Si un vecteur x est
orthogonal à u, alors φα(x) = x. Soit (ϵ1, · · · , ϵn−1) une base de [Vect(u)]⊥, alors B = (ϵ1, · · · , ϵn−1, u) est une base de

l’ev E car Vect(u)⊕ [Vect(u)]⊥ = E. Cette base est formée de vecteurs propres de φα, donc φα est diagonalisable et son
spectre est {1; 1 + α}.

Si α ̸= 0, alors E1 = [Vect(u)]⊥ et E1+α = Vect(u) sont les deux sep de l’endo φα. Si α = 0, alors φα = idE et E1 = E
est l’unique sep.

Remarques :



— dans le cas où α ̸= 0, le polynôme X2 − (2 + α)X + (1+ α) = (X − 1)(X − (1 + α)) est non seulement annulateur de
φα mais aussi qu’il est scindé à racines simples, on en déduit que φα est alors diagonalisable ;

— du spectre, on déduit que 0 est une valeur propre de φα si, et seulement si, α = −1. On retrouve ainsi que φα est
bijectif si, et seulement si, α ̸= −1.


