Colle 13 Séries entieres
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Exercice 1. On pose f:x — Z(lnn)x” et g:x— Z In (1 — n) "

n>1 n>2

1. Déterminer les rayons de convergence de f et de g.
2. Montrer que g est définie et continue sur [—1,1].

3.
4

. Montrer que f est continue sur [—1, 1] et trouver des équivalents de f et g en 1.

Trouver une relation entre (1 — ) f(z) et g(x) pour x €] — 1,1].



Solution 1.

1. Le critére de D’Alembert montre que les rayons de convergence de ces séries est 1 dans les deuz cas.
1

2. Sur Uintervalle [—1,0], la série définissant g est une série alternée et comme —In(l — —) < 0 est
n

décroissante et tend vers 0, on montre le reste R,, d’ordre n vérifie

1
Vo € [-1,0], |R,| < |In(1 — ——)z" ™| < |In(1 — ——)|

n+1 n+1
ce qui montre que R, converge uniformément vers 0 sur [—1,0]. La limite est donc continue sur
[717 0] .
+oo
3. Remarquons que si Z anx" converge sur | — 1,1], alors
n=1

+oo
(1-x) Z anx" = a1 + Z(an —ap_1)x"
n=1

n>2

Si a, =Inn, alors a; =0 et
1
Vn > 2, by =ap —ap—1 =In(l - —)
n

ce qui montre que (1 — x)f(z) = g(x), et f se prolonge par continuité en —1.

1 1
4. On aln(l — =) ~ ——=. Calculons
n n

Mais
0>In(l—-)+

1 1

donc la série Z (ln(l - =)+ )) a" est normalmeent convergente sur [—1,1] et sa valeur o en

n’ o n
n>2

1 vérifie < 0. On en déduit que g(x) —In(l — x) + = ~1 o =1 o(ln(1 — z)).

In(1 —z)

En conclusion, g(x) ~1 In(1 — ) et f(z) ~1 1
—x
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Exercice 2. Soit f une application de [0,1] dans R indéfiniment dérivable.
Pour n € N, on pose :

On note R le rayon de convergence de la série entiere E upx” et F' sa somme.
neN

1. Préciser R et F' dans chacun des cas suivants :
(a) f est constante
(b) f:x — (gz — 1) oll ¢ est un entier naturel non nul.
2. De fagon générale, exprimer R a l'aide de f.
3. On suppose que f(0) > 0.
Montrer que la suite u est de signe constant a partir d’un certain rang.
4. Etudier la convergence de la suite (|uy|)nen dans chacun des cas suivants :
(a) 0<[f(0)] <1
(b) 1£(0)] > 1
5. On suppose désormais que f(0) =1 et que f(x) > 0 pour tout z € [0, 1].

(a) Soit la suite v = (v, )nen définie par :

U,
vozlet,pournZLvn:—Z

Montrer qu’il existe une unique valeur du réel a pour laquelle la suite v admet une limite finie
et non nulle.
Exprimer «a en fonction de f'.

(b) Donner une équivalent de wuy,.

(c) Déterminer I’ensemble de définition de F



Solution 2. 1. (a) Quand f=c#0: R=— et F(x) =

1 1
]

1—cx’

(b)) R=+oo et F(x) = (1+x)7 "

1
2. R =400 sl existe k tel que f(E) =0 et R=—— sinon.

1
3. 1l existe un rang ko au deld duquel f(E) >0

4. (a) La suite tend vers 0.
(b) La suite tend vers +oo.
5. (a) Passer par la série > In(vp41) — In(v,) - a = f/(0).

Zln(vn_,_l) —In(v,) =1In ((unﬂ> —1In (%) =In(f(1/(n+1)) +a(lnn —In(n + 1))

n+ 1)e
:fl(o)—axl—I—O(l)
n n n2 )’

Car f(—7) = F(O) + —1£/(0) + O((), avee (0) = 1.

On en déduit que la série Z Inv,1—Inw, converge vers a ssi f'(0) = a. Et alors v, converge

n

vers L = e!

(b) u, ~ Ln®.

(c) Le rayon est 1 : reste l’étude aux bornes 1 et —1. On trouve :
> Sia>0:D=]—1,1[ par divergence grossiére.
> Sia < —1:D=][-1,1] par convergence absolue.

> 8i—1<a<0:D=[-1,1] par SATP divergente (en 1) et Th spécial des séries alternées
a partir d’un certain rang (en —1).
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Exercice 3.

1. (a) Soit a > 0et f:] —a,a[— R une fonction de classe C™ telle que :

Vn € N,V €] —a,a], f™(z) >0

, 0]
Ecrire la formule de Taylor f(z) = >}, ! k!(o) z% + R, (z) avec un reste intégrale et montrer
que pour tout x € [0, a[, la série de Taylor converge.

(b) Soient x et y tel que 0 < z < y < a.

n+1 =m0
Montrer que R, (z) < (%) R, (y). En déduire que Vx € [0, al, Z = f(x)
k=0 '

2. (a) Montrer que la fonction tangente est développable en série entiere sur Uintervalle | — 7, 7

(b) Montrer que les coefficients de ce développement tanz = ::6 anx™ sont donnés par :

1 n
ap=0,a1=1etVn>1a,41 = m;akanfkr



Solution 3.

1. (a) YneN,Vz € [0,af, f(x) =)

xT _ t n
z® +/ Qf(wrl)(t)dt. Par hypothése, la série de
0 n:

(k T =)™
Taylor > %xk est une série o termes positifs et Ry (x) = / @7') FO @y dt > 0.
0

n: N——
v >0

>0 -
~ f*0) 4
Donc ¥Vn € N,Vx € [0,a], g o= f(z) — Rp(z) < f(x). Les sommes partielles de la
k=0 '
)
série a termes positifs ;:6 fT(O)xk étant majorées, cette série converge. Donc la série de

Taylor de f converge en tout point x € [0,a].

(b) Soient x ety tel que 0 < x <y < a.
Le changement de variable t = %u donne :

x n Yy -z ! (n+1) oy _ n
R () :/0 @ﬂ“m(t)dt _ E/O Mfwl) <zu> du = <f”) /0 =" (%) du

n Y n! y n! y

Or, la fonction f+1) est croissante et f(+1) (%u) < f ) (u) puisque 2 < 1. Donc

0< Rale) < (x)OHJ{Ay(y1”“fm+”ondu—-(z)m+nfu@n

y n! y

Pour y < a, pour tout x € [0,y[, on a la convergence uniforme du reste vers 0. Elle est donc
somme d’une série entiére sur | — a,al.

2. (a) On montre par récurrence qu’il existe un polynome Q,(X) a coefficients réels postifs tel que

Vz €] — 2,2 [, tan™ (2) = Qn(tan(z)) La question précédente nou dit que

IX tan™ 2 tan@etD)
T f[’ tanz = Z tan'™ (0) L= Z tan (0) S

’ ! !
272 — = (2p+ 1)

Vr €|

car la fonction tangente étant impaire.

(b) ao = tan(0) = 0 et ay = =% =1

Vo €] - 2,2 | tanz = 3,5 a,a”

55 et par dérivation,

+o0 too 2
tan’(z) = Z na,z" ' =1+tan’z =1+ <Z anx”>
n=0 n=0
Notons Z:i% bpa™ le produit de la série Z;:B anx™ par elle-méme :
on a alors : by = agag = 0,by = agay + arag = 0,bs = agas + ara; + asag = 1 et plus

généralement, ¥n € N, b,, = ZZ:O ALQp—k

En identifiant les coefficients dans les deux séries entiéres tan’(z) = ::8
2

1+ ( :Z% anx”) =1+ Z::a bpaz™ on obtient : Vn > 1,(n+ 1)ant1 = by = Y p_g Uknk

soit aussi Vn > 1,a,41 = n%rl > ho Wkl

(n+ Dapt12™ =



XXX

Exercice 4. Soit f € C*°(R,R). Montrer ’équivalence entre

i) f est développable en série entiere sur un voisinage de 0 ,
i) il existe a > 0,M > 0 et a > 0 tels que Vn € N,Va € [—a, o, | f™)(z)| < Ma™nl.



Solution 4. On procéde par double implication :
<: s’l existe a« > 0, M > 0 et a > 0 tels que Vn € N,V € [—a, a], |f(") (:E)| < Ma™n!, alors l’inégalité
de Taylor Lagrange nous dit que

On pose 8 = min(a, %), et pour tout x € [—3, 8], (ax)"*! tend vers 0 quand n tend vers +oo.
+oo
=: 5 f(z) = Z anz™ pour tout x €] — R, R[ ot R > 0 est le rayon de convergence de la série, pour tout

n=0

€0,r[ et @ € [—m, 7], on a
+oo
f(rei‘g) _ Z anrneiné
n=0

la convergence étant normale en 0 pour r fixé, car la série est absolument convergente sur le disque ouvert
de convergence.

Le théoreme d’interversion série intégrale par convergence uniforme sur un segment, nous permet d’in-
tégrer terme a terme pour tout p € N

™ +oo T
f(re®)e= 7% dp = Z anr”/ P g0 = 21a; = sup | f(re'?)| > |an|r".
-7 n—0 - oc[—m,m)

(n)
De plus, f est C™ sur|— R, R[ et a,, = / (0) On pose M, = sup|, <, |f(2)]. On a ‘

3

n! n!

Soit z €] — R/2, R/2], alors pour tout h €] — R/2, R/2], la série

+o00 +o00 /400 n
f(z+h)= Zan(z—l— h)" = Z <Z (k>z"_khk'> :

n=0 \k=0

r

f™(0) ‘ M,

Comme |z| + |h| < R, la famille ((Z)z”_khk)(n pyene €t sommable. Le théréme de Fubini nous permet
d’intervertir les sommes :

Vh el — R/2,R/2[, f(z+h) = i <an <Z> z”k) Bk

ce qui montre que f est dévellopable en série entiere en z. Le méme raisonnement qu’en O montre que

()

n!

< M,
= (r/2)n

On en déduit que M = M, et « = R/2 répondent d la question.

Vn € N,




