
Colle 13 Séries entières

GIBOUIN Paul

Exercice 1. On pose f : x 7→
∑
n≥1

(lnn)xn et g : x 7→
∑
n≥2

ln

(
1− 1

n

)
xn.

1. Déterminer les rayons de convergence de f et de g.

2. Montrer que g est définie et continue sur [−1, 1[.

3. Trouver une relation entre (1− x)f(x) et g(x) pour x ∈]− 1, 1[.

4. Montrer que f est continue sur [−1, 1[ et trouver des équivalents de f et g en 1.
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Solution 1.

1. Le critère de D’Alembert montre que les rayons de convergence de ces séries est 1 dans les deux cas.

2. Sur l’intervalle [−1, 0], la série définissant g est une série alternée et comme − ln(1 − 1

n
) < 0 est

décroissante et tend vers 0, on montre le reste Rn d’ordre n vérifie

∀x ∈ [−1, 0], |Rn| ≤ | ln(1− 1

n+ 1
)xn+1| ≤ | ln(1− 1

n+ 1
)|

ce qui montre que Rn converge uniformément vers 0 sur [−1, 0]. La limite est donc continue sur
[−1, 0].

3. Remarquons que si

+∞∑
n=1

anx
n converge sur ]− 1, 1[, alors

(1− x)

+∞∑
n=1

anx
n = a1 +

∑
n≥2

(an − an−1)xn

Si an = lnn, alors a1 = 0 et

∀n ≥ 2, bn = an − an−1 = ln(1− 1

n
)

ce qui montre que (1− x)f(x) = g(x), et f se prolonge par continuité en −1.

4. On a ln(1− 1

n
) ∼ − 1

n
. Calculons

g(x)− (ln(1− x) + x) =
∑
n≥2

(
ln(1− 1

n
) +

1

n
)

)
xn

Mais

0 ≥ ln(1− 1

n
) +

1

n
∼ 1

2n2
,

donc la série
∑
n≥2

(
ln(1− 1

n
) +

1

n
)

)
xn est normalmeent convergente sur [−1, 1] et sa valeur α en

1 vérifie α < 0. On en déduit que g(x)− ln(1− x) + x ∼1 α =1 o(ln(1− x)).

En conclusion, g(x) ∼1 ln(1− x) et f(x) ∼1
ln(1− x)

1− x
.
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SAÏDANI Soren

Exercice 2. Soit f une application de [0, 1] dans R indéfiniment dérivable.
Pour n ∈ N, on pose :

un =

n∏
k=1

f(
1

k
)

On note R le rayon de convergence de la série entière
∑
n∈N

unx
n et F sa somme.

1. Préciser R et F dans chacun des cas suivants :

(a) f est constante

(b) f : x→ (qx− 1) où q est un entier naturel non nul.

2. De façon générale, exprimer R à l’aide de f .

3. On suppose que f(0) > 0.
Montrer que la suite u est de signe constant à partir d’un certain rang.

4. Etudier la convergence de la suite (|un|)n∈N dans chacun des cas suivants :

(a) 0 ≤ |f(0)| < 1

(b) |f(0)| > 1

5. On suppose désormais que f(0) = 1 et que f(x) > 0 pour tout x ∈ [0, 1].

(a) Soit la suite v = (vn)n∈N définie par :

v0 = 1 et, pour n ≥ 1, vn =
un
na

Montrer qu’il existe une unique valeur du réel a pour laquelle la suite v admet une limite finie
et non nulle.
Exprimer a en fonction de f ′.

(b) Donner une équivalent de un.

(c) Déterminer l’ensemble de définition de F
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Solution 2. 1. (a) Quand f = c 6= 0 : R =
1

|c|
et F (x) =

1

1− cx
.

(b) R = +∞ et F (x) = (1 + x)q−1.

2. R = +∞ s’il existe k tel que f(
1

k
) = 0 et R =

1

|f(0)|
sinon.

3. Il existe un rang k0 au delà duquel f(
1

k
) > 0

4. (a) La suite tend vers 0.

(b) La suite tend vers +∞.

5. (a) Passer par la série
∑

ln(vn+1)− ln(vn) : a = f ′(0).∑
ln(vn+1)− ln(vn) = ln

(
un+1

(n+ 1)a

)
− ln

(un
na

)
= ln (f(1/(n+ 1)) + a(lnn− ln(n+ 1))

=
f ′(0)

n
− a× 1

n
+O

(
1

n2

)
,

Car f(
1

n+ 1
) = f(0) +

1

n+ 1
f ′(0) +O((

1

n2
), avec f(0) = 1.

On en déduit que la série
∑
n

ln vn+1− ln vn converge vers α ssi f ′(0) = a. Et alors vn converge

vers L = el

(b) un ∼ Lna.

(c) Le rayon est 1 : reste l’étude aux bornes 1 et −1. On trouve :
-> Si a ≥ 0 : D =]− 1, 1[ par divergence grossière.
-> Si a < −1 : D = [−1, 1] par convergence absolue.
-> Si −1 ≤ a < 0 : D = [−1, 1[ par SATP divergente (en 1) et Th spécial des séries alternées
à partir d’un certain rang (en −1).
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ZEIN Rami

Exercice 3.

1. (a) Soit a > 0 et f :]− a, a [−→ R une fonction de classe C∞ telle que :

∀n ∈ N,∀x ∈]− a, a[, f (n)(x) ≥ 0

Écrire la formule de Taylor f(x) =
∑n
k=0

f(k)(0)
k! xk +Rn(x) avec un reste intégrale et montrer

que pour tout x ∈ [0, a[, la série de Taylor converge.

(b) Soient x et y tel que 0 < x < y < a.

Montrer que Rn(x) ≤
(
x
y

)n+1

Rn(y). En déduire que ∀x ∈ [0, a[,

+∞∑
k=0

f (k)(0)

k!
xk = f(x)

2. (a) Montrer que la fonction tangente est développable en série entière sur l’intervalle ] −π2 ,
π
2 [

(b) Montrer que les coefficients de ce développement tanx =
∑+∞
n=0 anx

n sont donnés par :

a0 = 0, a1 = 1 et ∀n ≥ 1, an+1 =
1

n+ 1

n∑
k=0

akan−k
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Solution 3.

1. (a) ∀n ∈ N,∀x ∈ [0, a[, f(x) =

n∑
k=0

f (k)(0)

k!
xk +

∫ x

0

(x− t)n

n!
f (n+1)(t)dt. Par hypothèse, la série de

Taylor
∑ f(k)(0)

k! xk est une série à termes positifs et Rn(x) =

∫ x

0

(x− t)n

n!︸ ︷︷ ︸
≥0

f (n+1)(t)︸ ︷︷ ︸
≥0

dt ≥ 0.

Donc ∀n ∈ N,∀x ∈ [0, a[,

n∑
k=0

f (k)(0)

k!
xk = f(x) − Rn(x) ≤ f(x). Les sommes partielles de la

série à termes positifs
∑+∞
k=0

f(k)(0)
k! xk étant majorées, cette série converge. Donc la série de

Taylor de f converge en tout point x ∈ [0, a[.

(b) Soient x et y tel que 0 < x < y < a.
Le changement de variable t = x

yu donne :

Rn(x) =

∫ x

0

(x− t)n

n!
f (n+1)(t)dt =

x

y

∫ y

0

(
x− x

yu
)n

n!
f (n+1)

(
x

y
u

)
du =

(
x

y

)(n+1)∫ y

0

(y − u)n

n!
f (n+1)

(
x

y
u

)
du

Or, la fonction f (n+1) est croissante et f (n+1)
(
x
yu
)
≤ f (n+1)(u) puisque x

y < 1. Donc

0 ≤ Rn(x) ≤
(
x

y

)(n+1) ∫ y

0

(y − u)n

n!
f (n+1)(u)du =

(
x

y

)(n+1)

Rn(y)

Pour y < a, pour tout x ∈ [0, y[, on a la convergence uniforme du reste vers 0. Elle est donc
somme d’une série entière sur ]− a, a[.

2. (a) On montre par récurrence qu’il existe un polynôme Qn(X) à coefficients réels postifs tel que
∀x ∈]− π

2 ,
π
2

[
, tan(n)(x) = Qn(tan(x)) La question précédente nou dit que

∀x ∈ [−π
2
,
π

2
[, tanx =

+∞∑
n=0

tan(n)(0)

n!
xn =

+∞∑
p=0

tan(2p+1)(0)

(2p+ 1)!
x2p+1

car la fonction tangente étant impaire.

(b) a0 = tan(0) = 0 et a1 = tan′(0)
1! = 1

∀x ∈]− π
2 ,

π
2

[
, tanx =

∑+∞
n=0 anx

n et par dérivation,

tan′(x) =

+∞∑
n=0

nanx
n−1 = 1 + tan2 x = 1 +

(
+∞∑
n=0

anx
n

)2

Notons
∑+∞
n=0 bnx

n le produit de la série
∑+∞
n=0 anx

n par elle-même :

on a alors : b0 = a0a0 = 0, b1 = a0a1 + a1a0 = 0, b2 = a0a2 + a1a1 + a2a0 = 1 et plus
généralement, ∀n ∈ N, bn =

∑n
k=0 akan−k

En identifiant les coefficients dans les deux séries entières tan′(x) =
∑+∞
n=0(n + 1)an+1x

n =

1 +
(∑+∞

n=0 anx
n
)2

= 1 +
∑+∞
n=0 bnx

n on obtient : ∀n ≥ 1, (n + 1)an+1 = bn =
∑n
k=0 akan−k

soit aussi ∀n ≥ 1, an+1 = 1
n+1

∑n
k=0 akan−k
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XXX

Exercice 4. Soit f ∈ C∞(R,R). Montrer l’équivalence entre

i) f est développable en série entière sur un voisinage de 0 ,

ii) il existe α > 0,M > 0 et a > 0 tels que ∀n ∈ N,∀x ∈ [−α, α],
∣∣f (n)(x)

∣∣ ≤Mann!.
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Solution 4. On procède par double implication :
⇐: s’il existe α > 0,M > 0 et a > 0 tels que ∀n ∈ N,∀x ∈ [−α, α],

∣∣f (n)(x)
∣∣ ≤ Mann!, alors l’inégalité

de Taylor Lagrange nous dit que ∣∣∣∣∣f(x)−
n∑
k=0

xk

k!
f (k)(0)

∣∣∣∣∣ ≤M(ax)n+1.

On pose β = min(α, 1a ), et pour tout x ∈ [−β, β], (ax)n+1 tend vers 0 quand n tend vers +∞.

⇒: Si f(x) =

+∞∑
n=0

anx
n pour tout x ∈]−R,R[ où R > 0 est le rayon de convergence de la série, pour tout

r ∈ [0, r[ et θ ∈ [−π, π], on a

f(reiθ) =

+∞∑
n=0

anr
nei nθ

la convergence étant normale en θ pour r fixé, car la série est absolument convergente sur le disque ouvert
de convergence.
Le théorème d’interversion série intégrale par convergence uniforme sur un segment, nous permet d’in-
tégrer terme à terme pour tout p ∈ N∫ π

−π
f(reiθ)e−i pθ dθ =

+∞∑
n=0

anr
n

∫ π

−π
ei(n−p)θ dθ = 2πal ⇒ sup

θ∈[−π,π]
|f(rei θ)| ≥ |an|rn.

De plus, f est C∞ sur ]−R,R[ et an =
f (n)(0)

n!
. On pose Mr = sup|z|≤r |f(z)|. On a

∣∣∣∣f (n)(0)

n!

∣∣∣∣ ≤ Mr

rn
.

Soit z ∈]−R/2, R/2[, alors pour tout h ∈]−R/2, R/2[, la série

f(z + h) =

+∞∑
n=0

an(z + h)n =

+∞∑
n=0

(
+∞∑
k=0

(
n

k

)
zn−khk

)
.

Comme |z| + |h| < R, la famille
((
n
k

)
zn−khk

)
(n,k)∈N2 est sommable. Le thérème de Fubini nous permet

d’intervertir les sommes :

∀h ∈]−R/2, R/2[, f(z + h) =

+∞∑
k=0

(
an

(
n

k

)
zn−k

)
hk

ce qui montre que f est dévellopable en série entière en z. Le même raisonnement qu’en 0 montre que

∀n ∈ N,
∣∣∣∣f (n)(z)n!

∣∣∣∣ ≤ Mr

(r/2)n

On en déduit que M = Mr et α = R/2 répondent à la question.
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