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E s p a c e s v e c t o r i e l s n o r m é s

Exercice 1. Pour chaque polynôme P ∈ R[X], on définit

N(P ) = |P (0)|+
∫ 1

0

|P ′(t)| dt.

Montrer que la fonction N est une norme sur l’espace vectoriel R[X].

Exercice 2. Soit E l’espace vectoriel des fonctions continues de [0, 1] vers R. Soient ∥f∥1, ∥f∥2 et ∥f∥∞ les
trois normes classiques d’une fonction f de E.

1. Soit la suite des fonctions fn définies par

∀x ∈ [0, 1], fn(x) = xn

pour chaque n ∈ N∗. Calculer ∥fn∥1, ∥fn∥2 et ∥fn∥∞.

2. Les normes ∥ · ∥1 et ∥ · ∥∞ sont-elles équivalentes ?

3. Les normes ∥ · ∥1 et ∥ · ∥2 sont-elles équivalentes ?

Exercice 3. Soit E l’espace vectoriel des suites u bornées telles que u0 = 0.

1. Montrer que
∥u∥ = sup

n∈N
|un| et N(u) = sup

n∈N
|un+1 − un|

sont deux normes sur E.

2. Déterminer un réel k tel que : ∀u ∈ E, N(u) ≤ k · ∥u∥.
3. Quel est le meilleur k possible ?

4. Soit un réel a ∈]0, 1[. Soit u la suite définie par

u0 = 0 et ∀n ∈ N, un+1 = un + an.

Calculer N(u) et ∥u∥.
5. Les normes ∥ · ∥ et N(·) sont-elles équivalentes ?

Exercice 4 (Une fonction additive et continue est linéaire).

Soient E un R−espace vectoriel et φ : E → R une fonction additive, i.e.

∀(u, v) ∈ E2, φ(u+ v) = φ(u) + φ(v).

1. Soit un vecteur x ∈ E. Montrer que : pour tout (p, q) ∈ Z× Z∗, φ
(

p
qx
)
= p

qφ(x).

2. On munit l’espace vectoriel E d’une norme et on suppose que la fonction φ est additive et continue.
Montrer que la fonction φ est linéaire.



Exercice 5 (Mines Ponts PC 2009).

Soient E un espace vectoriel normé de dimension finie et un endomorphisme u ∈ L(E).

1. Soit x ∈ Ker(u−idE)∩Im(u−idE). Montrer qu’il existe y ∈ E tel que : ∀n ∈ N, (n+1)x = un+1(y)−y.

2. On suppose que u est 1–lipschitzien. Montrer que E = Ker(u− idE)⊕ Im(u− idE).

Exercice 6. Soit un entier n ≥ 2. On munit l’ev Mnn(R) de la norme définie par

1. ∥A∥ = max
1≤i≤n

n∑
j=1

|aij |.

(On a déjà montré que c’est une norme, qu’elle est subordonnée et donc sous-multiplicative � exemple 45
et proposition 44 du chapitre XI). Justifier que la trace tr est une forme linéaire continue et déterminer,
en fonction de n, sa norme subordonnée |||tr|||.

2. ∥M∥ = max
(i,j)∈J1,nK2

|mij |.

Montrer que cette norme n’est pas sous-multiplicative mais que n∥ · ∥ est une norme sous-multiplicative.

3. ∥M∥ =
√
tr(MTM).

Montrer que cette norme est sous-multiplicative � une inégalité de Cauchy-Schwarz dans Rn. Mais
qu’elle n’est pas une norme subordonnée � calculer ∥In∥.

Exercice 7 (inégalités de Young, de Hölder & de Minkowski).

Soient deux réels p > 1 et q > 1 tels que 1
p + 1

q = 1.

1. Soient u et v deux réels positifs. Prouver l’inégalité de Young

uv ≤ up

p
+

vq

q

de deux manières :

(a) en étudiant, pour tout v ≥ 0 fixé, la fonction φ : R+ → R, u 7→ up

p + vq

q − uv ;

(b) en utilisant la concavité de la fonction ln.

2. Soient deux réels a < b et l’espace vectoriel E = C([a, b]).
(a) Soient F et G deux fonctions positives de E telles que

∫ b

a
F p =

∫ b

a
Gq = 1. Montrer que

∫ b

a
FG ≤ 1.

(b) Soient f et g deux fonctions positives de E. Prouver l’inégalité de Hölder

∫ b

a

fg ≤

(∫ b

a

fp

)1/p(∫ b

a

gq

)1/q

.

(c) Examiner le cas particulier où p = q = 2.

3. (a) Soient f et g deux fonctions positives de E. En remarquant que (f + g)p = (f + g)(f + g)p/q,
prouver l’inégalité de Minkowski(∫ b

a

(f + g)p

)1/p

≤

(∫ b

a

fp

)1/p

+

(∫ b

a

gp

)1/p

.

(b) Montrer que ∥f∥p =
(∫ b

a
|f |p

)1/p
définit une norme sur l’espace vectoriel E.

� Dans le corrigé, on prouve aussi que : ∥f∥p −→
p→∞

∥f∥∞.



Exercice 8 (Séries entières & convergence uniforme). Soit, pour chaque n ∈ N, le polynôme Pn défini par

Pn(X) =

n∑
k=0

Xk

k!
.

Soit R > 0. On munit l’ev E = C([−R,+R]) de la norme ∞.

1. Montrer que la suite de fonctions (Pn)n∈N converge dans l’evn E. Quelle est sa limite ?

2. L’ensemble des fonctions polynomiales est-il un fermé de l’espace vectoriel normé E ?

3. Montrer que, à partir d’un certain rang N , aucun polynôme Pn ne s’annule sur l’intervalle [−R,+R].

Exercice 9 (oral Centrale PC 2011 ).

On munit E = C0([0, 1],R) de la norme ∥ · ∥2 définie par ∀f ∈ E, ∥f∥2 = (
∫ 1

0
f2)1/2. Soient

Φ: f ∈ E 7→
∫ 1

0

f et Ψ: f ∈ E 7→
∫ 1

0

|f |.

1. Montrer que, pour tout f ∈ E, |Φ(f)| ≤ Ψ(f) ≤ ∥f∥2.
2. Les applications Φ et Ψ sont-elles continues de (E, ∥ ∥2) dans R.

Exercice 10. Soit n ∈ N∗. Soit An, respectivement Sn, le sous-espace vectoriel des matrices de Mn(K)
antisymétriques, respectivement symétriques.

1. Montrer que An et Sn sont fermés.

2. Soint A une matrice antisymétrique telle que la suite (Ak)k∈N converge. Quelle est sa limite ?

Exercice 11.

1. Soit A ∈ Mn(K) une matrice carrée de taille n. Montrer que A est nilpotente si, et seulement si, An = 0.
En déduire que l’ensemble des matrices nilpotentes de taille n est un fermé de Mn(K).

2. Montrer que toute matrice triangulaire de Mn(K) est la limite d’une suite de matrices diagonalisables.
En déduire que l’ensemble des matrices diagonalisables de Mn(C) est dense dans Mn(C).

Exercice 12. Soient A et B deux parties d’un espace vectoriel normé E, Ā et B̄ leur adhérence.

Montrer que :

1. si A ⊂ B, alors Ā ⊂ B̄ ;

2. A ∪B = Ā ∪ B̄ ;

3. A ∩B ⊂ Ā ∩ B̄ ;

4. Soit E = R. Trouver deux parties A et B de R telles que Ā ∩ B̄ ̸⊂ A ∩B.



Exercice 13 (inégalité de Bessel & égalité de Parseval).

Soit E un espace préhilbertien et ∥ · ∥2 la norme associée au produit scalaire ⟨·|·⟩. Soit (en)n∈N une suite
de vecteurs de E. Soit x un vecteur de E.

1. Pour chaque n ∈ N, on note pn la projection orthogonale sur le sous-espace vectoriel Fn = Vect (ek, k ∈ J0, nK) .
Montrer que la suite des réels ∥x− pn(x)∥2 est décroissante.

2. On suppose que la suite des vecteurs en est totale, i.e. Vect(en, n ∈ N) est dense dans E. Montrer que la
suite des réels ∥x− pn(x)∥2 tend vers 0.

3. On suppose que la suite des vecteurs en est orthonormée, i.e. ∀(i, j) ∈ N2, ⟨ei|ej⟩ = δij . Prouver, pour
tout n ∈ N, l’inégalité de Bessel :

n∑
k=0

⟨x|ek⟩2 ≤ ∥x∥22.

En déduire que la série numérique
∑

⟨x|ek⟩2 converge.

4. On suppose que la suite des vecteurs en est orthonormée et totale. Prouver l’égalité de Parseval :

∞∑
k=0

⟨x|ek⟩2 = ∥x∥22.

Exercice 14 (Une norme est euclidienne ssi elle vérifie l’identité du parallélogramme).

Soit E un espace vectoriel muni d’une norme ∥.∥ vérifiant l’identité du parallélogramme :

∀(x, y) ∈ E2, ∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2.

Soit f : E2 → R l’application définie par :

∀(x, y) ∈ E2, f(x, y) =
∥x+ y∥2 − ∥x− y∥2

4
.

1. Soient x, y et z trois vecteurs de E. Montrer que :

(a) f(x+ y, z) + f(x− y, z) = 2f(x, z) ;

(b) f(0E , z) = 0 et f(2x, z) = 2f(x, z) ;

(c) f(x, z) + f(y, z) = f(x+ y, z).

2. Montrer que la fonction f est bilinéaire, symétrique, définie et positive

� l’exercice 4 de ce TD et le corollaire 36 du chapitre XI.

3. En déduire qu’il existe un unique produit scalaire tel que ∀v ∈ E, ⟨v|v⟩ = ∥v∥2.

Et aussi : les exercices 1,34,35,36,37,38,39,44,45,54 de la banque CCINP & les exercices 3 et 4 du DS no 5 MPI/* 2024-2025.


