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Exercice 1. Pour chaque polynôme P ∈ R[X], on définit

N(P ) = |P (0)|+
∫ 1

0

|P ′(t)| dt.

Montrer que la fonction N est une norme sur l’espace vectoriel R[X].

Soient α un réel, P et Q deux polynômes :

* ∀t ∈ [0, 1], (αP )′(t) = αP ′(t), d’où N(αP ) = |αP (0)|+
∫ 1

0
|αP ′(t)| dt = |α|N(P ) ;

** D’une part |(P + Q)(0)| = |P (0) + Q(0)| ≤ |P (0)| + |Q(0)|, d’autre part ∀t ∈ [0, 1], |(P + Q)′(t)| = |P ′(t) + Q′(t)| ≤
|P ′(t)|+ |Q′(t)|, d’où (croissance de l’intégrale)

∫ 1
0 |(P +Q)′(t)| dt ≤

∫ 1
0 |P ′(t)| dt+

∫ 1
0 |Q′(t)| dt, d’où N(P +Q) ≤ N(P )+N(Q) ;

*** Si N(P ) = 0, alors

{
P (0) = 0 (♡)∫ 1
0 |P ′(t)| dt = 0 (♡♡)

. Or la fonction |P ′| est positive (car c’est une valeur absolue) et continue

(car c’est la valeur absolue d’un polynôme) sur [0, 1] d’où (♡♡) implique qu’elle est nulle sur [0, 1]. D’où la fonction P est

constante sur l’intervalle [0, 1], elle est donc nulle sur [0, 1] car (♡). Le polynôme P a donc une infinité de racines, donc le

polynôme P est nul. On en déduit que N est une norme sur l’espace vectoriel R[X] (et a fortiori sur tout sev de R[X] tel que

Rn[X], mais ce n’est pas demandé).

Exercice 2. Soit E l’espace vectoriel des fonctions continues de [0, 1] vers R. Soient ∥f∥1, ∥f∥2 et ∥f∥∞ les
trois normes classiques d’une fonction f de E.

1. Soit la suite des fonctions fn définies par

∀x ∈ [0, 1], fn(x) = xn

pour chaque n ∈ N∗. Calculer ∥fn∥1, ∥fn∥2 et ∥fn∥∞.

2. Les normes ∥ · ∥1 et ∥ · ∥∞ sont-elles équivalentes ?

3. Les normes ∥ · ∥1 et ∥ · ∥2 sont-elles équivalentes ?

1. ∥fn∥1 =
∫ 1
0 |fn(t)| dt =

∫ 1
0 tn dt = 1

n+1

∥fn∥2 =
√∫ 1

0 [fn(t)]2 dt =
√∫ 1

0 t2n dt = 1√
2n+1

∥fn∥∞ = sup
t∈[0,1]

|fn(t)| = sup
t∈[0,1]

tn = 1.

2. Par l’absurde : supposons qu’il existe une constante α telle que ∀f ∈ E, ∥f∥∞ ≤ α·∥f∥1. En particulier, ∀n ∈ N∗, ∥fn∥∞ ≤
α · ∥fn∥1. D’où ∀n ∈ N∗, 1 ≤ α · 1

n+1
. C’est absurde car 1

n+1
→ 0, donc les normes ∥ · ∥1 et ∥ · ∥∞ ne sont pas équivalentes.

3. Par l’absurde : supposons qu’il existe une constante β telle que ∀f ∈ E, ∥f∥2 ≤ β · ∥f∥1. En particulier, ∀n ∈ N∗, ∥fn∥2 ≤
γ · ∥fn∥1. D’où ∀n ∈ N∗, 1√

2n+1
≤ β · 1

n+1
. C’est absurde car n+1√

2n+1
−→
n→∞

∞, donc les normes ∥ · ∥1 et ∥ · ∥2 ne sont pas

équivalentes.



Exercice 3.
Soit E l’espace vectoriel des suites u bornées telles que u0 = 0.

1. Montrer que

∥u∥ = sup
n∈N

|un| et N(u) = sup
n∈N

|un+1 − un|

sont deux normes sur E.

2. Déterminer un réel k tel que : ∀u ∈ E, N(u) ≤ k · ∥u∥.
3. Quel est le meilleur k possible ?

4. Soit un réel a ∈]0, 1[. Soit u la suite définie par

u0 = 0 et ∀n ∈ N, un+1 = un + an.

Calculer N(u) et ∥u∥.
5. Les normes ∥ · ∥ et N(·) sont-elles équivalentes ?

1. ∥u∥ = sup
n∈N

|un| est une norme sur E car :

* ∀λ ∈ R, ∀u ∈ E, ∥λu∥ = supn∈N |λun| = |λ|∥u∥ ;

** ∀u ∈ E, ∀v ∈ E, ∀n ∈ N, |un + vn| ≤ |un|+ |vn| ≤ ∥u∥+ ∥v∥ qui est un majorant, d’où ∥u+ v∥ ≤ ∥u∥+ ∥v∥ car
∥u+ v∥ est le plus petit majorant ;

*** ∥u∥ = 0 =⇒ ∀n ∈ N, |un| = 0 =⇒ u = 0.

N(u) = sup
n∈N

|un+1 − un| est une norme car :

* ∀λ ∈ R, ∀u ∈ E, N(λu) = sup
n∈N

|λ(un+1 − un)| = |λ|N(u) ;

** ∀u ∈ E, ∀v ∈ E, ∀n ∈ N, |(un+1 + vn+1) − (un + vn)| ≤ |un+1 − un| + |vn+1 − vn| ≤ N(u) + N(v) qui est un
majorant, d’où N(u+ v) ≤ N(u) +N(v) car N(u+ v) est le plus petit majorant ;

*** N(u) = 0 =⇒ ∀n ∈ N, |un+1 − un| = 0 =⇒ ∀n ∈ N, un = u0 =⇒ u = 0 car u0 = 0.

2. ∀n ∈ N, |un+1 − un| ≤ |un|+ |un+1| ≤ 2∥u∥ qui est un majorant, d’où N(u) ≤ 2∥u∥ car N(u) est le plus petit majorant.

3. 2 est le plus petit k tel que ∀u ∈ E, N(u) ≤ k∥u∥ car : si

{
u0 = 0

un = (−1)n
, alors N(u) = 2∥u∥ et u ̸= 0E .

4. N(u) = sup
n∈N

|an| = 1 car : a0 = 1 et la suite (an) décrôıt car a ∈]0, 1[.

∀n ∈ N∗, un =

n−1∑
k=0

ak =
1− an

1− a
car a ̸= 1. De plus, a < 1, d’où : |un| = un ≤ 1

1−a
qui est majorant. Et c’est le plus

petit majorant car limun = 1
1−a

. Donc ∥u∥ = 1
1−a

.

5. Par l’absurde : supposons qu’il existe une constante γ telle que ∀u ∈ E, ∥u∥ ≤ γN(u). En particulier, pour la suite u de la
question précédente, ∥u∥ = 1

1−a
≤ γN(u) = γ. Ceci est vrai pour tout a ∈]0, 1[ et les inégalités larges passent à la limite.

Or 1
1−a

−→
a→1−

+∞. C’est absurde, donc les normes ∥ · ∥ et N(·) ne sont pas équivalentes.

Exercice 4 (Une fonction additive et continue est linéaire).

Soient E un R−espace vectoriel et φ : E → R une fonction additive, i.e.

∀(u, v) ∈ E2, φ(u+ v) = φ(u) + φ(v).

1. Soit un vecteur x ∈ E. Montrer que : pour tout (p, q) ∈ Z× Z∗, φ
(

p
qx
)
= p

qφ(x).

2. On munit l’espace vectoriel E d’une norme et on suppose que la fonction φ est additive et continue.
Montrer que la fonction φ est linéaire.



1. (a) Par récurrence, on montre pour tout n ∈ N la propriété Pn « φ(nx) = nφ(x) ».

• Par additivité, φ(x+ 0E) = φ(0E) + φ(x), d’où φ(0E) = 0. Or 0x = 0E , d’où P0.

• On suppose Pn. Par additivité, φ(nx+ x) = φ(nx) + φ(x) = nφ(x) + φ(x) car Pn. Donc Pn+1.

• Donc φ(nx) = nφ(x) pour tout n ∈ N.
(b) Soit n ∈ N. Par additivité, φ (nx+ (−nx)) = φ(nx) + φ(−nx). Or φ(0E) = 0, d’où φ(−nx) = −φ(nx) qui est égal à

−nφ(x) d’après la question précédente. Donc φ(kx) = kφ(x) pour tout k ∈ Z.

(c) Soit (p, q) ∈ Z× Z∗ : qφ
(

p
q
x
)
= φ

(
q p
q
x
)
= φ(px) = pφ(x). On divise par q qui n’est pas nul : φ

(
p
q
x
)
= p

q
φ(x).

2. (a) Soit (λ, x) ∈ R× E. De l’additivite de φ, on a déduit que ∀r ∈ Q, φ(rx) = rφ(x). Or Q est dense dans R, il existe
donc une suite de rationnels rn tels que rn −→

n→∞
λ. Pour chaque n ∈ N, φ(rnx) = rnφ(x) et :

— d’une part, rnφ(x) tend vers λφ(x) ;

— d’autre part, φ(rnx) tend vers φ(λx) car rnx −→
n→∞

λx et la fonction φ est continue.

Donc φ(λx) = λφ(x) par unicité de la limite.

(b) Soient un réel λ et deux vecteurs x et y : φ(λx + y) = φ(λx) + φ(y) par additivité et on vient de montrer que
φ(λx) = λφ(x). Donc φ(λx+ y) = λφ(x) + φ(y) : la fonction φ est linéaire.

Exercice 5 (Mines Ponts PC 2009).

Soient E un espace vectoriel normé de dimension finie et un endomorphisme u ∈ L(E).

1. Soit x ∈ Ker(u− idE)∩Im(u− idE). Montrer qu’il existe y ∈ E tel que : ∀n ∈ N, (n+1)x = un+1(y)−y.

2. On suppose que u est 1–lipschitzien. Montrer que E = Ker(u− idE)⊕ Im(u− idE).

1. Soit x dans l’intersection des deux sous-espaces en question. Il existe alors y ∈ E tel que x = u(y)− y, et il vérifie x = u(x).
Mais alors x = uk(x) pour tout k ∈ N, ce qui s’écrit encore

∀k ∈ N, x = uk+1(y)− uk(y).

En sommant ces égalités pour 0 ⩽ k ⩽ n, on obtient, par télescopage,

∀n ∈ N, (n+ 1)x = un+1(y)− y.

2. Comme E est de dimension finie, la formule du rang appliquée à l’endomorphisme v = u− idE montre que dimKer(u−
idE) + dim Im(u− idE) = dimE. Il reste à montrer que Ker(u− idE) ∩ Im(u− idE) = {0E}.

De la première question, l’inégalité triangulaire permet de déduire que (n + 1)∥x∥ ⩽ ∥un+1(y)∥ + ∥y∥. Comme u est
1–lipschitzienne, il en est de même de toutes les puissances de u, donc ∥un+1(y)∥ ⩽ ∥y∥. Par suite,

∀n ∈ N, ∥x∥ ⩽
2∥y∥
n+ 1

·

Les inégalités larges passant à la limite, on obtient ∥x∥ = 0 en faisant tendre n vers ∞, donc x = 0.

Exercice 6. Soit un entier n ≥ 2. On munit l’ev Mnn(R) de la norme définie par

1. ∥A∥ = max
1≤i≤n

n∑
j=1

|aij |.

(On a déjà montré que c’est une norme, qu’elle est subordonnée et donc sous-multiplicative � exemple 45
et proposition 44 du chapitre XI). Justifier que la trace tr est une forme linéaire continue et déterminer,
en fonction de n, sa norme subordonnée |||tr|||.

2. ∥M∥ = max
(i,j)∈J1,nK2

|mij |.

Montrer que cette norme n’est pas sous-multiplicative mais que n∥ · ∥ est une norme sous-multiplicative.

3. ∥M∥ =
√

tr(MTM).

Montrer que cette norme est sous-multiplicative � une inégalité de Cauchy-Schwarz dans Rn. Mais
qu’elle n’est pas une norme subordonnée � calculer ∥In∥.



1. On sait que tr est une application linéaire de Mn(R) vers R, donc une forme linéaire. De plus l’application tr est continue
car :

— (première méthode) l’ev Mn(R) est de dimension finie et toute application linéaire sur un ev de dimension finie est
continue ;

— (seconde méthode) pour toute matrice carrée A, |tr(A)| =

∣∣∣∣∣
n∑

i=1

aii

∣∣∣∣∣ ≤
n∑

i=1

|aii| ≤
n∑

i=1

n∑
j=1

|aij | ≤
n∑

i=1

∥A∥ = n∥A∥. Par

suite, l’application tr est n−lipschitzienne, donc continue. Et n est le meilleur (le plus petit) rapport possible car
|tr(In)| = n · ∥In∥. Donc n = |||tr|||.

2. La norme ∥ · ∥ n’est pas sous-multiplicative car (voici un contre-exemple), en notant U la matrice carrée dont tous les
éléments valent 1 : ∥U∥ = 1 mais U2 = nU , d’où ∥U2∥ = n > 1× 1 = ∥U∥ ∥U∥ car n ≥ 2.

Soient A = (ai,j) et B = (bi,j) dans Mn. Notons C = AB = (ci,j) :

∀(i, j) ∈ J1, nK2, |ci,j | =

∣∣∣∣∣
n∑

k=1

ai,kbk,j

∣∣∣∣∣ ≤
n∑

k=1

|ai,k| |bk,j | ≤ ∥A∥∥B∥
n∑

k=1

1 = n∥A∥∥B∥

qui est un majorant. Le maximum étant le plus petit majorant, ∥C∥ = ∥AB∥ ≤ n∥A∥ ∥B∥, c’est-à-dire n∥AB∥ ≤ n∥A∥n∥B∥,
ce qui signifie que la norme n∥ · ∥ est sous-multiplicative.

3. Par l’absurde : si la norme euclidienne ∥ · ∥ est la norme subordonnée à une norme N : Mn1(R) → R+, alors ∥In∥ =

sup
X ̸=0

N(InX)
N(X)

= 1. C’est absurde car ∥In∥ =
√
n ̸= 1. Mais c’est une norme sous-multiplicative. En effet, soient A = (aij) et

B = (bij) dans Mn. Notons C = AB = (cij) : alors cij =
∑

k aikbkj et ∥AB∥2 = ∥C∥2 =
∑

i,j c
2
ij . Or, d’après l’inégalité

de Cauchy-Schwarz dans Rn, c2ij =
(∑

k aikbkj
)2 ≤

(∑
k a2ik

) (∑
k b2kj

)
. Donc ∥AB∥2 ≤

∑
i,j

[(∑
k a2ik

) (∑
k b2kj

)]
=(∑

i,k a2ik

)(∑
j,k b2kj

)
= ∥A∥2∥B∥2.

Exercice 7 (inégalités de Young, de Hölder & de Minkowski).

Soient deux réels p > 1 et q > 1 tels que 1
p + 1

q = 1.

1. Soient u et v deux réels positifs. Prouver l’inégalité de Young

uv ≤ up

p
+

vq

q

de deux manières :

(a) en étudiant, pour tout v ≥ 0 fixé, la fonction φ : R+ → R, u 7→ up

p + vq

q − uv ;

(b) en utilisant la concavité de la fonction ln.

2. Soient deux réels a < b et l’espace vectoriel E = C([a, b]).
(a) Soient F et G deux fonctions positives de E telles que

∫ b

a
F p =

∫ b

a
Gq = 1. Montrer que

∫ b

a
FG ≤ 1.

(b) Soient f et g deux fonctions positives de E. Prouver l’inégalité de Hölder∫ b

a

fg ≤

(∫ b

a

fp

)1/p(∫ b

a

gq

)1/q

.

(c) Examiner le cas particulier où p = q = 2.

3. (a) Soient f et g deux fonctions positives de E. En remarquant que (f + g)p = (f + g)(f + g)p/q,
prouver l’inégalité de Minkowski(∫ b

a

(f + g)p

)1/p

≤

(∫ b

a

fp

)1/p

+

(∫ b

a

gp

)1/p

.

(b) Montrer que ∥f∥p =
(∫ b

a
|f |p

)1/p
définit une norme sur l’espace vectoriel E.

� Dans le corrigé, on prouve aussi que : ∥f∥p −→
p→∞

∥f∥∞.



1. (a) La fonction φ est dérivable sur R+ et ∀u ≥ 0, φ′(u) = up−1 − v, d’où le tableau de variations :

u 0 v
1

p−1 +∞
φ′(u) − 0 +

φ ↘ ↗
0

La fonction φ est ainsi positive, d’où l’inégalité de Young.

(b) Par concavité du logarithme, pour tous x > et y > 0, ln
(

1
p
x+ 1

q
y
)

≥ 1
p
lnx + 1

q
ln y. Et par croissance de

l’exponentielle, 1
p
x+ 1

q
y ≥ x1/py1/q . Si x = up et y = vq , alors uv ≤ up

p
+ vq

q
si u et v sont strictemetn positifs. Et,

si u = 0 ou v = 0, cette inégalité reste vraie.

2. (a) De l’inégalité de Young, on déduit que : ∀t ∈ [a, b], F (t)G(t) ≤ 1
p
[F (t)]1/p + 1

q
[G(t)]1/q, d’où

∫ b
a FG ≤ 1

p

∫ b
a F p +

1
q

∫ b
a Gq = 1

p
+ 1

q
= 1 par croissance de l’intégrale.

(b) La fonction g est positive et continue, d’où : si l’intégrale
∫ b
a gq est nulle, alors la fonction g est nulle et l’inégalité de

Hölder est donc vraie. De même si l’autre intégrale
∫ b
a fp est nulle.

Si les deux intégrales sont non nulles, alors posons, pour tout x ∈ [a, b], F (x) =
f(x)(∫ b

a fp
)1/p

et G(x) =
g(x)(∫ b

a gq
)1/q

,

de sorte que
∫ b
a F p =

∫ b
a Gq = 1. On déduit alors de la question précédente que

∫ b
a fg ≤

(∫ b
a fp

)1/p (∫ b
a gq

)1/q
.

(c) Dans le cas où p = q = 2, l’inégalité de Hölder s’écrit
∫ b
a fg ≤

√∫ b
a f2

√∫ b
a g2 et vaut pour toutes fonctions

f et g positives et continues sur [a, b]. Par suite, en remplaçant f par |f | et g par |g|, on obtient l’inégalité∫ b
a |fg| ≤

√∫ b
a f2

√∫ b
a g2 qui vaut pour toutes fonctions f et g continues sur [a, b]. Enfin, parce que

∣∣∣∫ b
a fg

∣∣∣ ≤ ∫ b
a |fg|,

il en résulte l’inégalité de Cauchy-Schwarz |⟨a|b⟩| ≤ ∥f∥2 ∥g∥2 si on munit l’espace vectoriel C([a, b]) du produit
scalaire usuel.

3. (a) Si
∫ b
a (f + g)p = 0, alors la fonction f + g est nulle car c’est une fonction continue et positive. Par suite les fonctions

f et g sont nulles car elles sont positives. Et l’inégalité de Minkowski s’écrit 0 ≤ 0 + 0.

Sinon
∫ b
a (f + g)p =

∫
f(f + g)p/q +

∫
g(f + g)p/q . On applique l’inégalité de Hölder au premier terme :∫

f(f+g)p/q ≤
(∫

fp
)1/p [∫

(f + g)p
]1/q

. De même pour le second terme :
∫
g(f+g)p/q ≤

(∫
gp

)1/p [∫
(f + g)p

]1/q
.

Par suite
∫ b
a (f + g)p ≤

[(∫
fp

)1/p
+

(∫
gp

)1/p] [∫
(f + g)p

]1/q
. On obtient l’inégalité de Minkowski en divisant par[∫

(f + g)p
]1/q

qui est strictement positif.

(b) On vérifie les trois axiomes d’une norme :

• la fonction |f |p est positive et continue, d’où :
∫ b
a |f |p = 0 =⇒ |f |p = 0 =⇒ f = 0 ;

• pour tout réel α,
∫ b
a |αf |p = |α|p

∫ b
a |f |p ;

• si f et g sont deux fonctions de E, alors
∫ b
a |f + g|p ≤

∫ b
a (|f |+ |g|)p par croissance de l’intégrale. D’où(∫ b

a |f + g|p
)1/p

≤
(∫ b

a (|f |+ |g|)p
)1/p

car la fonction x 7→ x1/p est croissante sur R+. Et
(∫ b

a (|f |+ |g|)p
)1/p

≤(∫ b
a |f |p

)1/p
+

(∫ b
a |g|p

)1/p
d’après l’inégalité de Minkowski. On a ainsi prouvé l’inégalité triangulaire.

Remarque — Montrons que, pour toute fonction f ∈ E, ∥f∥p −→
p→∞

∥f∥∞ = sup
t∈[a,b]

|f(t)|.

Si la fonction f est nulle, alors ∥0E∥p = 0 −→
p→∞

0 = ∥0E∥∞.

Sinon ∥f∥∞ est le réel M = max
[a,b]

|f | > 0. Soit ε tel que M > ε > 0 :

— d’une part |f | ≤ M sur le segment [a, b] ;

— d’autre part il existe un intervalle de longueur η > 0 sur lequel |f | ≥ M − ε par continuité de la fonction f .

D’où η(M − ε)p ≤
∫ b
a |f |p ≤ (b− a)Mp. Donc η1/p(M − ε) ≤ ∥f∥p ≤ (b− a)1/pM .

D’une part, η1/p = e(ln η)/p tend vers 1 par continuité de la fonction exp, d’où η1/p(M − ε) −→
p→∞

M − ε, donc

M − 2ε ≤ η1/p(M − ε) à partir d’un certain rang. D’autre part, (b− a)1/pM −→
p→∞

M , d’où (b− a)1/pM ≤ M + ε à

partir d’un certain rang.

Donc M − 2ε ≤ ∥f∥p ≤ M + ε à partir d’un certain rang. On en déduit que ∥f∥p −→
p→∞

M = ∥f∥∞.



Exercice 8 (Séries entières & convergence uniforme). Soit, pour chaque n ∈ N, le polynôme Pn défini par

Pn(X) =

n∑
k=0

Xk

k!
.

Soit R > 0. On munit l’ev E = C([−R,+R]) de la norme ∞.

1. Montrer que la suite de fonctions (Pn)n∈N converge dans l’evn E. Quelle est sa limite ?

2. L’ensemble des fonctions polynomiales est-il un fermé de l’espace vectoriel normé E ?

3. Montrer que, à partir d’un certain rang N , aucun polynôme Pn ne s’annule sur l’intervalle [−R,+R].

1. Le rayon de convergence de la série entière
∑
k≥0

xk

k!
est infini. Sur le segment [−R,+R] ⊂]−∞,+∞[, cette série entière

converge normalement, donc uniformément, vers la fonction f : [−R,+R] → R, x 7→ ex. D’où ∥Pn − f∥∞ −→
n→∞

0.

2. L’ensemble F des fonctions polynomiales est une partie de E mais cette partie F n’est pas fermée car la suite de fonctions
polynomiales Pn ∈ F converge (pour la norme ∥ · ∥∞ vers la fonction f /∈ F (l’exponentielle n’est pas un polynôme car elle
n’est pas nulle et elle est sa propre dérivée). Cela contredit la caractérisation séquentielle d’un fermé.

3. Soit ε =
1

2
· e−R. D’après la première question, il existe un entier naturel N tel que :

∀x ∈ [−R,+R], ∀n ≥ N, |Pn(x)− ex| ≤ ε.

Soient n ≥ N et x ∈ [−R,+R] : ex = ex − Pn(x) + Pn(x), d’où |ex| ≤ |ex − Pn(x)|+ |Pn(x)|, d’où

|Pn(x)| ≥ |ex| − |ex − Pn(x)| ≥ e−R −
1

2
· e−R ≥

1

2
· e−R > 0.

Donc le polynôme Pn ne s’annule pas sur l’intervalle [−R,+R].

Exercice 9 (oral Centrale PC 2011 ).

On munit E = C0([0, 1],R) de la norme ∥ · ∥2 définie par ∀f ∈ E, ∥f∥2 = (
∫ 1

0
f2)1/2. Soient

Φ: f ∈ E 7→
∫ 1

0

f et Ψ: f ∈ E 7→
∫ 1

0

|f |.

1. Montrer que, pour tout f ∈ E, |Φ(f)| ≤ Ψ(f) ≤ ∥f∥2.
2. Les applications Φ et Ψ sont-elles continues de (E, ∥ ∥2) dans R.

Soit f ∈ E : d’une part |Φ(f)| ≤ Ψ(f), d’autre part l’inégalité de Cauchy et Schwarz montre que Ψ(f) ⩽
(∫ 1

0 1
)1/2

×
(∫ 1

0 f2
)1/2

=

∥f∥2. L’application Φ étant de plus linéaire, on en déduit qu’elle est continue. Quant à l’application Ψ, elle n’est pas linéaire.
Montrons qu’elle est 1–lipschitzienne, donc continue :

∀(f, g) ∈ E2, |Ψ(f)−Ψ(g)| =
∣∣∣∣∫ 1

0
|f | − |g|

∣∣∣∣ ⩽ ∫ 1

0
||f | − |g|| ⩽

∫ 1

0
|f − g| = Ψ(f − g) ⩽ ∥f − g∥2.

Exercice 10. Soit n ∈ N∗. Soit An, respectivement Sn, le sous-espace vectoriel des matrices de Mn(K)
antisymétriques, respectivement symétriques.

1. Montrer que An et Sn sont fermés.

2. Soint A une matrice antisymétrique telle que la suite (Ak)k∈N converge. Quelle est sa limite ?

1. L’application f : Mn(K) → Mn(K), M 7→ M −MT est linéaire sur un ev de dimension finie donc elle est continue. D’où
Sn = Ker(f) = f−1

(
{0Mn(K)}

)
est un fermé car c’est l’image réciproque d’un fermé par une application continue �

proposition 50 du chapitre XI.

On montre de même que An est un fermé en utilisant l’application Mn(K) → Mn(K), M 7→ M +MT .



2. Soit L la limite de la suite convergente (Ak)k∈N.

La suite (A2k)k∈N est extraite de la suite (Ak)k∈N, elle converge donc aussi vers L � proposition 14 du chapitre XI. De
plus, chaque matrice A2k est symétrique et l’ensemble Sn est fermé d’après la première question, donc la matrice L est
aussi symétrique d’après la caractérisation séquentielle d’un fermé � proposition 54 du chapitre XI.

On montre de même que la matrice Lest antisymétrique car c’est la limite de la suite des matrices A2k+1 antisymétriques.

Or An ∩ Sn = {0Mn(K)}. Donc la matrice L est nulle.

Exercice 11. 1. Soit A ∈ Mn(K) une matrice carrée de taille n. Montrer que A est nilpotente si, et
seulement si, An = 0. En déduire que l’ensemble des matrices nilpotentes de taille n est un fermé de
Mn(K).

2. Montrer que toute matrice triangulaire de Mn(K) est la limite d’une suite de matrices diagonalisables.
En déduire que l’ensemble des matrices diagonalisables de Mn(C) est dense dans Mn(C).

1. Soit une matrice A nilpotente. Il existe alors p ∈ N∗ tel que Ap = 0 et Ap−1 ̸= 0. Par suite il existe X ∈ Mn1(K) tel que
Ap−1X ̸= 0. Puis on montre que la famille (X,AX, · · · , Ap−1X) de p vecteurs colonnes est libre � Exercice 34 du chapitre
II. On en déduit que p ≤ n car la dimension de Mn1(K) vaut n. Or Ap = 0. D’où An = Ap ·An−p = 0 ·An−p = 0.

Réciproquement, si An = 0, alors A est nilpotente.

De cette équivalence, on déduit que l’ensemble des matrices nilpotentes est égal à l’image réciproque de l’ensemble
{0Mnn(K)} par l’application f : Mnn(K) → Mnn(K), M 7→ Mn. Or f est continue car (⋆) et {0Mnn(K)} est un fermé,

donc f−1
(
{0Mnn(K)}

)
est un fermé.

(⋆) f est la composée g ◦ h des applications h : Mnn(K) → Mnn(K)n, M 7→ (M, · · · ,M) et g : Mnn(K)n →
Mnn(K), (M1, · · · ,Mn) 7→ M1 × · · · × Mn qui sont continues car g est linéaire sur un ev de dimension finie et h est
multilinéaire sur un ev de dimension finie.

2. Comme Mn(K) est de dimension finie, on sait qu’une suite suite de matrices converge si, et seulement si, chacune de
ses coordonnées converge. Soit T une matrice triangulaire : ses valeurs propres sont égales à ses éléments diagonaux
λ1, · · · , λn.

Si ces valeurs impropres sont toutes égales, alors on pose ε = 42. Sinon,

ε =
1

2
min

λi ̸=λj

|λi − λj |.

Puis on définit, pour chaque k ∈ N∗, une matrice

Tk = T − diag
( ε

k
,
ε

2k
, · · · ,

ε

nk

)
.

La suite (Tk) converge vers T et chaque matrice Tk est diagonalisable car ses valeurs propres sont distinctes deux à deux.

Dans la suite, K = C : toute matrice A est donc trigonalisable. Par suite, il existe P ∈ GLn(C) telle que la matrice
T = P−1AP est triangulaire. Or on vient de montrer qu’il existe une suite de matrices diagonalisables Tk qui converge
vers T .

On définit, pour chaque p ∈ N∗, Ak = PTkP
−1. D’une part, chaque matrice Ak est diagonalisable car semblable à la

matrice diagonalisable Tk. D’autre part, la suite (Ak) converge vers A. En effet Tk −→
k→∞

T , d’où PTkP
−1 −→

k→∞
PTP−1

car l’application M 7→ PMP−1 est continue (comme toutes les applications linéaires sur un ev de dimension finie).

Exercice 12. Soient A et B deux parties d’un espace vectoriel normé E, Ā et B̄ leur adhérence.

Montrer que :

1. si A ⊂ B, alors Ā ⊂ B̄ ;

2. A ∪B = Ā ∪ B̄ ;

3. A ∩B ⊂ Ā ∩ B̄ ;

4. Soit E = R. Trouver deux parties A et B de R telles que Ā ∩ B̄ ̸⊂ A ∩B.



1. Hypothèse : A ⊂ B.

Première méthode : soit x ∈ A. Alors ∀ε > 0, B(x, ε) ∩A ̸= ∅.

D’où : ∀ε > 0, ∃y ∈ A, y ∈ B(x, ε). Or y ∈ A =⇒ y ∈ B par hypothèse.

D’où : ∀ε > 0, ∃y ∈ B, y ∈ B(x, ε). D’où x ∈ B.

Donc A ⊂ B.

Deuxième méthode : on utilise la caractérisation séquentielle de l’adhérence. Un point a est adhérent à A si, et seulement
si, a est la limite d’une suite (un) d’éléments de A.

Soit x ∈ A. Alors x est la limite d’une suite (un) d’éléments de A.

Or ∀n ∈ N, un ∈ B par hypothèse. D’où x est la limite d’une suite (un) d’éléments de B. D’où x ∈ B.

Donc A ⊂ B.

2. ⋆ Montrons d’abord que : A ∪B ⊂ A ∪B. Cela résulte de la question précédente car A ⊂ A ∪B et B ⊂ A ∪B.

⋆⋆ Montrons ensuite que : A ∪B ⊂ A ∪B.

Première méthode : soit x ∈ A ∪B. Alors

∀ε > 0, B(x, ε) ∩ (A ∪B) ̸= ∅ ♡

— ou bien x ∈ B ;

— ou bien x /∈ B. Alors ∃ε0 > 0, B(x, ε0) ∩B = ∅.

D’où ∀0 < ε ≤ ε0, B(x, ε) ∩B = ∅.

Or ♡, d’où : ∀0 < ε ≤ ε0, B(x, ε) ∩A ̸= ∅.

D’où ∀ε > 0, B(x, ε) ∩A ̸= ∅. D’où x ∈ A.

Donc A ∪B ⊂ A ∪B.

Deuxième méthode : soit x ∈ A ∪B. Alors x est la limite d’une suite (un) d’éléments de A ∪B.

— ou bien on peut extraire de (un) une suite d’éléments de B et alors x ∈ B ;

— ou bien à partir d’un certain rang N tous les un sont dans A. Alors x est la limite de la suite (un)n≥N dont tous les

élements sont dans A. D’où x ∈ A.

Donc A ∪B ⊂ A ∪B.

3. Cela résulte de la première question : A ∩B ⊂ A, d’où A ∩B ⊂ A. De même, A ∩B ⊂ B. Donc A ∩B ⊂ A ∩B.

4. Soient A = Q et B = R \ Q : alors A ∩B = ∅ mais A ∩B = R.

Exercice 13 (inégalité de Bessel & égalité de Parseval).

Soit E un espace préhilbertien et ∥ · ∥2 la norme associée au produit scalaire ⟨·|·⟩. Soit (en)n∈N une suite
de vecteurs de E. Soit x un vecteur de E.

1. Pour chaque n ∈ N, on note pn la projection orthogonale sur le sous-espace vectoriel Fn = Vect (ek, k ∈ J0, nK) .
Montrer que la suite des réels ∥x− pn(x)∥2 est décroissante.

2. On suppose que la suite des vecteurs en est totale, i.e. Vect(en, n ∈ N) est dense dans E. Montrer que la
suite des réels ∥x− pn(x)∥2 tend vers 0.

3. On suppose que la suite des vecteurs en est orthonormée, i.e. ∀(i, j) ∈ N2, ⟨ei|ej⟩ = δij . Prouver, pour
tout n ∈ N, l’inégalité de Bessel :

n∑
k=0

⟨x|ek⟩2 ≤ ∥x∥22.

En déduire que la série numérique
∑

⟨x|ek⟩2 converge.

4. On suppose que la suite des vecteurs en est orthonormée et totale. Prouver l’égalité de Parseval :

∞∑
k=0

⟨x|ek⟩2 = ∥x∥22.



1. Soit n ∈ N : ∥x − pn+1(x)∥2 = inf
y∈Fn+1

∥x − y∥2 d’après le théorème des moindres carrés. Or Fn ⊂ Fn+1, d’où ∀y ∈

Fn, ∥x−y∥2 ≥ ∥x−pn+1(x)∥2 car l’inf est un minorant. En particulier, pn(x) ∈ Fn, donc ∥x−pn(x)∥2 ≥ ∥x−pn+1(x)∥2.
La suite des réels ∥x− pn(x)∥2 est donc décroissante.

2. Soit ε > 0 : la suite (ek)k∈N est totale, il existe donc N ∈ N et un vecteur yN ∈ FN tels que ∥x − yN∥2 ≤ ε. Or
∥x− pN (x)∥2 ≤ ∥x− yN∥2. Et la suite des réels ∥x− pn(x)∥2 est décroissante. D’où ∀n ≥ N, ∥x− pn(x)∥2 ≤ ε. Donc
∥x− pn(x)∥2 −→

n→∞
0.

3. La famille (ek)k∈J0,nK est une b.o.n. du sous-espace vectoriel Fn, d’où :

— d’après le théorème de la projection orthogonale, pn(x) =

n∑
k=0

⟨x|ek⟩ek ;

— d’après le théorème de Pythagore, ∥pn(x)∥22 =

n∑
k=0

⟨x|ek⟩2.

Or ∥pn(x)∥22 ≤ ∥x∥22 car, d’après le théorème de Pythagore, ∥x− pn(x)∥22 + ∥pn(x)∥22 = ∥x∥2. Donc

n∑
k=0

⟨x|ek⟩2 ≤ ∥x∥22.

La suite des sommes partielles Sn =

n∑
k=0

⟨x|ek⟩2 est majorée (par ∥x∥2), elle est aussi croissante (car ses termes sont

positifs), donc la série numérique
∑

⟨x|ek⟩2 converge.

4. ∥x∥22 − Sn = ∥x∥22 − ∥pn(x)∥22 = ∥x − pn(x)∥22 d’après le théorème de Pythagore. Or ∥x − pn(x)∥2 −→
n→∞

0 d’après la

question 2, d’où Sn −→
n→∞

∥x∥2. Donc

∞∑
k=0

⟨x|ek⟩2 = ∥x∥22.

Exercice 14 (Une norme est euclidienne ssi elle vérifie l’identité du parallélogramme).

Soit E un espace vectoriel muni d’une norme ∥.∥ vérifiant l’identité du parallélogramme :

∀(x, y) ∈ E2, ∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2.

Soit f : E2 → R l’application définie par :

∀(x, y) ∈ E2, f(x, y) =
∥x+ y∥2 − ∥x− y∥2

4
.

1. Soient x, y et z trois vecteurs de E. Montrer que :

(a) f(x+ y, z) + f(x− y, z) = 2f(x, z) ;

(b) f(0E , z) = 0 et f(2x, z) = 2f(x, z) ;

(c) f(x, z) + f(y, z) = f(x+ y, z).

2. Montrer que la fonction f est bilinéaire, symétrique, définie et positive

� l’exercice 4 de ce TD et le corollaire 36 du chapitre XI.

3. En déduire qu’il existe un unique produit scalaire tel que ∀v ∈ E, ⟨v|v⟩ = ∥v∥2.

Voir le corrigé manuscrit ci-dessous.


