Chapitre XII Endomorphismes remarquables d’un
espace euclidien
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Dans ce chapitre, on se place dans un espace euclidien E : un R—espace vectoriel de dimension finie n
muni d’un produit scalaire (:|-) (et de facto de la norme associée || - ||).

XII.1 QU’EST-CE QU’UNE MATRICE ORTHOGONALE ?

DEFINITION 1
On dit qu'une matrice carrée A € M,,(R) est orthogonale si AT - A =1T,,.

L'ensemble des matrices orthogonales de M,,(R) est noté O, (R) ou O(n) et est appelé le groupe
orthogonal d'ordre n.

REMARQUE 2 — Le déterminant d’une matrice orthogonale vaut +1.

Preuve — 1 =det(I,) = det(AT - A) = det(AT) - det(A) = [det(A)]%. O

Toute matrice orthogonale est inversible car :
Ac O,(R) = det(A) ==£1 = det(4) #0 = A e GL,(R).

On en déduit que :

|AcO,R) <= AT - A=1, < AT =41 < A AT =1, |

Le sous-ensemble des matrices orthogonales dont le déterminant vaut +1 est noté SO, (R) ou SO(n)
et est appelé le groupe spécial orthogonal d’ordre n : SO, (R) C O,(R) C GL,(R).

EXERCICE 3 — Montrer que SO, (R) est un sous-groupe de O, (R), qui est un sous-groupe de GL,(R).

Vérifier par ailleurs que ces ensembles sont stables par transposition.

PROPOSITION 4
Une matrice est orthogonale si, et seulement si, ses colonnes (ou ses lignes) forment une b.o.n. de R” (muni
du produit scalaire canonique).

Autrement dit : une matrice est orthogonale si, et seulement si, c'est la matrice de passage d'une b.o.n.
de F vers une b.o.n. de E.

Preuve — On note C1,...,Cy les colonnes d’une matrice A € My (R) :

MT M = I, & V(i) € [1,n]?, (Ci|C}) = 8;; & (C1,...,Cr) est une base orthonormée.

En outre, A est orthogonale si, et seulement si, AT I’est. Or la transposition change les colonnes en lignes. (]
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CHAPITRE XII. ENDOMORPHISMES REMARQUABLES D’UN ESPACE EUCLIDIEN

METHODE 5 — En particulier, soit A une matrice 3 x 3 de colonnes C1, Cs et Cs.

1l suffit de vérifier que :
— (C1,Cs) est une famille orthonormée et Cy A Cy = £C5 pour montrer que A € O3(R) ;
— (C1,C%) est une famille orthonormée et Cy A Cy = +C5 pour montrer que A € SO3(R).

EXERCICE 6 — Soit 6 € R. Etudier les matrices
A= CPSQ —sind , B= C.OSQ sin(6 sinf cosf O] et D=
sinf  cosf sinf —cosf

cosf) —sinf 0
)
0 0 1

= o O
O = O
S O =

XII.2 ISOMETRIES VECTORIELLES

DEFINITION 7
Soient un espace euclidien I et une application f : ' — E. On dit que f est une isométrie vectorielle si
f conserve le produit scalaire :

Y(u,v) € B2, (f(u)|f(v)) = (ulv).

L’ensemble des isométries vectorielles de E est noté O(E). Une isométrie vectorielle est aussi appelée
un automorphisme orthogonal, a cause des propositions 8 et 10.

PROPOSITION 8
Toute isométrie vectorielle de FE est linéaire et bijective.

Autrement dit : toute isométrie vectorielle de F est un automorphisme de F.

Mieux : I'ensemble O(E) des isométries de £ est un sous-groupe du groupe GL(E) des automorphismes
de F.

Preuve — Soit f une isométrie, soient u et v deux vecteurs de F, soient a et b dans R. On va montrer que la norme du
vecteur f(au + bv) — af(u) — bf(v) est nulle, ce qui impliquera que ce vecteur est nul et donc que f est linéaire :

1 (au +bv) — af(w) = bf (0| = (f(au + bv) — af (u) — bf (v)] f(au + bv) — af(w) — bf(v)))
= (F(au + bv)| f(au + bv)) — 2(f(au + bv)laf(w) + b (v))
+ (af (u) + bf()laf (w) + b (v))

= (on développe et on utilise que f conserve le produit scalaire) = 0

Comme f est linéaire et que E est de dimension finie, il suffit de montrer que f est injective pour prouver que f est
bijective : Vx € E, f(z) =0 = (f(z)|f(z)) =0 = (x|z) = 0 (car f conserve le produit scalaire). Cela implique que
z = 0p (car le produit scalaire est défini).

Enfin, les isométries de £ foment un groupe. En effet :

— D’ensemble des isométries de E n’est pas vide car idg conserve le produit scalaire;
— la composée fog de deux isométries f et g est une isométrie car ¥(u,v) € E2, (f(g(w))|f(g(v))) = (g(u)]|g(v)) = (u|v);
— la réciproque d’une isométrie f existe (car on a prouvé qu’une isométrie est bijective) et est une isométrie car

Y(u,v) € B, (f~H(w)f~(v)) = (F(f @) f(f 7 (v))) = (ulv).
O
THEOREME 9 (Caractérisations d’une isométrie)
Soient un espace euclidien E et une application f : £ — E.
Les propriétés suivantes sont équivalentes :

1. f conserve le produit scalaire;
2. f est linéaire et conserve la norme : Vu € E, || f(u)|| = ||u||;

3. f est linéaire et transforme une b.o.n. de F en une b.o.n. de E.

Preuve —
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XII.3. ENDOMORPHISMES AUTOADJOINTS

2= 1
1
(F@IF@) = 5 (1@ + @I = 1£@]E = 7))
1 RS
=3 (I1f w4+ = [IF @) = If@)II%) par linéarité
1
= 5 (llu ol = llull = [vl*) par hypothése
= (ulv)
1=3 L’application f est linéaire d’apres la proposition 8. Soit (e1, ..., en) une base orthonormée; f conserve le produit
scalaire, d’ou
V(i 5) € [Ln]?,  (fea)lf(e)) = (eilej) = bi;
donc (f(e1),..., f(en)) est une base orthonormée.
3=2 Soit (e1,...,en) une base orthonormée. Si (f(e1),..., f(en)) est une base orthonormée, alors :

2

n
Vu=wiei € B, ||f(w)]? =

n 2 n n
Domifled)| = a7 =|> wiei|| =lul.
i=1 i=1 i=1 i=1
(|
PROPOSITION 10 (Caractérisation matricielle d’une isométrie)
Soit un espace euclidien E de dimension n :
f est une isométrie de & ssi la matrice de f, dans une b.o.n., est orthogonale.
Autrement dit : f € O(E) <= [flp.om. € On(R).
Preuve — Les colonnes de la matrice [f]p de f dans la b.o.n. B = (e1,...,en) forment une b.o.n. si, et seulement si,
(f(e1),..., f(en)) est une b.o.n.. D’apres le théoréme 9, c’est le cas si, et seulement si, f est une isométrie. (]

XII.3 ENDOMORPHISMES AUTOADJOINTS

DEFINITION 11
On dit qu'un endomorphisme f : E — E est autoadjoint si :

V(u,v) € B2, (f(u)lv) = (ulf(v)).

Un endomorphisme autoadjoint est ainsi appelé a cause de la proposition 15. Et est aussi appelé
un endomorphisme symétrique a cause de la proposition suivante. L’ensemble des endomorphismes
autoadjoints est noté S(FE).

PRrRoPOSITION 12
Un endomorphisme f est autoadjoint 55t la matrice de f, dans une b.o.n., est symétrique

Autrement dit : f € S(E) <= [flb.o.n. € Sn(R).

Preuve — Soit B = (e1,...,en) une base orthonormée. Soit A = (aij)1<i,j<n la matrice de f dans la base B. Pour
tout (i,5) € [1,n]? , a;; = {e;|f(e;)) car B est orthonormée. Pour la méme raison, aj; = {e;|f(e;)) = (f(e:)|e;) par symétrie
du produit scalaire.

f est autoadjoint <= V(u,v) € B2, (f(u)|v) = (u|f(v))
= V(i,j) € [Ln]?, (f(ei)lej) = (el f(ej)) =
— aji = Q55

EXERCICE 13 — Soient E un espace euclidien et F' un sev de E. La projection orthogonale sur I est le
projecteur sur F parallélement o F-. Montrer que :

1. si f est un endomorphisme autoadjoint, alors Ker(f) et Im(f) sont orthogonaux et supplémentaires ;
2. p est une projection orthogonale si, et seulement si, p est un projecteur autoadjoint.
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L sev F

Og p(x)

F1GURE XII.1 - PROJECTION ET SYMETRIE ORTHOGONALES

PROPOSITION-DEFINITION 14 (Interprétation géométrique de la transposée)
Si f est un endomorphisme d'un espace euclidien E, alors il existe un unique endomorphisme de F, noté f*
et appelé I'adjoint de f, tel que :

V(uvv) € E27 (f*(u),v) = <u7f(v)>

Si A est la matrice de f dans une bon de E, alors AT est la matrice de f* dans cette bon : [f*]oon = [f]L,,,-

Preuve — On fixe le vecteur u et 'endomorphisme f. L’application ¢ : E — R, v — (u, f(v)) est une forme linéaire. D’apres
le théoreme de représentation de Riesz (théoreme 29 du chapitre VIII), il existe donc un unique vecteur, qu’on décide de
noter f*(u) tel que : Vv € E, ¢(v) = (f*(u),v).
L’application f* : E — E, u > f*(u) est lindaire car, pour tous (a1, a2) € R? et (u1,u2) € E2, (aqu1 + agua, f(v)) est
égal :
— d’une part, & a1 (u1, f(v)) + a2 (u, f(v)) = (a1 f*(u1) + a2 f*(u2), f(v)) par linéarité & gauche du produit scalaire ;
— d’autre part, & (f*(a1u1 + a2u2),v) par définiton de I’adjoint.

Par unicité, les vecteurs aq f*(u1) + aof*(u2) et f*(a1u1 + asuz) sont égaux.

Enfin, si on se place dans une base B de E, alors I’endomorphisme f est représenté par une matrice carrée A et les
vecteurs u et v par des vecteurs colonnes X et Y. Si, de plus, cette base B est orthonormée, alors (f*(u),v) = (u, f(v)) =
XT(AY) = (ATX)TY. Ceci est vrai pour tout vecteur v (i.e. tout vecteur colonne Y'), d’ott ATX = [f*(u)]g. Et cela est

vrai pour tout vecteur u (i.e. tout vecteur colonne X), donc la matrice de f* dans la base B est AT. O

Soient f et g deux endomorphismes de E, soient « et § deux réels. De la définition de 1'adjoint (ou des
propriétés de la transposée), il résulte que :
(feg) =g of (f*)r=f et (af + Bg)" = af" + By,
(A-B)T' =BT . AT | (AT = A et (aA+ BB)T = aAT + 3BT,

Les applications L(E) — L(E), f+ f* et M,(R) = M, (R), A~ AT sont donc des applications
linéaires involutives.

PROPOSITION 15
Soit f un endomorphisme d'un espace eucldien E :

(i) f est autoadjoint si, et seulement si, f* = f;
(i) f est une isométrie si, et seulement si, f* = f=1.
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EXERCICE 16 — Soient E un espace euclidien et F un sev de E. La symétrie orthogonale par rapport a
F est la symétrie par rapport ¢ F parallélement ¢ F+. Montrer que s est une symétrie orthogonale si, et
seulement si, s est une isométrie autoadjointe.

XII.4 STABILITE DE L’ORTHOGONAL

Endomorphismes autoadjoints et isométries vectorielles vérifient une méme propriété : la stabilité de
I’orthogonal.

ProrosiTION 17
Soient f un endomorphisme autoadjoint de E et F' un sev de F.

Si I est stable par f, alors F'* est aussi stable par f.

Preuve —
Soit u € F+. On veut montrer que f(u) € F. Soit v € F :

(f(w)lv) = (u|f(v)) car f est symétrique
0 car f(v) € F si F est stable par f.

Cela est vrai pour tout v € F, donc f(u) € F+. O

ProrosiTiON 18
Soient f une isométrie vectorielle de E et F' un sev de E.

Si F est stable par f, alors F- est aussi stable par f.

Preuve — Si F est stable, alors f(F) C F. De plus, f est bijective. D’olt dim f(F') = dim F. Donc f(F) = F.
Soit u € F+. On veut montrer que f(u) € FL. Soit v € F : il existe vg € F tel que f(vg) = v. D’oil
(f(W)v) = (f(w)f(vo)) = (ulvo) =0

car u € F et vg € F. Cela est vrai pour tout v € F, donc f(u) € FL. O

ProrosiTioN 19
Un sous-espace vectoriel F' de F est stable par f si, et seulement si, - est stable par f*.

Preuve — Supposons que F est stable par f. Soient € F et y € F-. On veut montrer que f*(y) est orthogonal & z :
(f*(y),z) = {y, f(x)) par définition de 'adjoint. Or f(x) € F par hypothese. Donc f(z) L y car y € FL.

Pour la réciproque, on procéde de méme. Ou on constate, en notant G = F+ et g = f*, que 'on vient de montrer que :
G stable par ¢ = G stable par g*. Or G+ = F et g* = f. O

XII.5 LE THEOREME SPECTRAL

LEMME 20
Soit f un endomorphisme autoadjoint de E.
1. Les sous-espaces propres de f sont deux a deux orthogonaux (autrement dit : si deux vecteurs propres
sont associés a des valeurs propres distinctes, alors ils sont orthogonaux).
2. Les valeurs propres de f sont toutes réelles : Sps(f) C R.

Preuve —

1. Soient A1 et A2 deux valeurs propres de f distinctes et Ej et Ea les sep qui leur sont respectivement associés.
Montrons qu’ils sont orthogonaux. Soient z1 € Eq et x2 € Ea. Alors A\ (z1|z2) = (f(z1)|z2) = (z1|f(z2)) = Aa(z1|z2).
Or A1 # A2, d’olt (z1|z2) =0 donc Eq L Es : les sous-espaces propres de f sont deux & deux orthogonaux.
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2. Soient A une valeur propre (complexe) de f et x un vecteur propre associé & A. Pour raisonner avec les matrices, on se
place dans une b.o.n. B de E : soient A la matrice de f dans la base B et X le vecteur colonne représentant x dans
la méme base : AX = AX, d’ot1 *XAX = A*XX. En transposant et en conjuguant, on obtient : X*AX = At X X.
Comme A est symétrique réelle, on a tXAX = XXX d’olt X¥XX = AXX. Or ce n’est pas XX qui est nul,
d’ott A = X, donc A est réel.

O

THEOREME 21 (Théoréme spectral)
Un endomorphisme f d’un espace euclidien £ est autoadjoint si, et seulement si, il est diagonalisable dans
une base orthonormée.

Autrement dit : si, et seulement si, il existe une base orthonormée de E formée de vecteurs propres de f.

Ou encore : si, et seulement si, E est la somme orthogonale des sous-espaces propres de f.

Preuve — Suppososn que f est autoadjoint. Et montrons par récurrence sur n (la dimension de E) la propriété : « il existe
une base orthonormée B = (e1,...,e,) formée de vecteurs propres de f ».

Initialisation : Pour n = 1, soit v € E non nul, alors la base (ﬁ) convient.

Hérédité : Soit n > 2. On suppose la propriété vraie au rang n — 1 et on veut la montrer au rang n. Soit e; un vecteur propre
de f associé a une valeur propre A. (Il existe au moins une valeur propre complexe de f et celle-ci est réelle d’apres le
lemme.) Quitte & diviser e; par sa norme, on peut supposer qu’il est de norme 1. Ce sera le premier vecteur de la base.

Vect(e1) est stable par f donc Vect(e1)® aussi (proposition 17). On peut appliquer ’hypothése de récurrence
4 Vect(e1)™, on en trouve une base orthonormée B’ = (ea,...,en) formée de vecteurs propres de f restreinte
4 Vect(e1)+. Donc (e1,ez2...,en) est une base orthonormée de E formée de vecteurs propres de f.

Conclusion : Pour tout n € N*| il existe une base orthonormée B formée de vecteurs propres de f.

Réciproquement : si (€1, ,en) est une bon de E formée de vecteurs propres de f, alors (en notant A; la valeur propre
associée a chaque vecteur ;) : pour tout (3,5) € [1,n]2, (ei, f(g;)) = Aj{ei,e;) = A;jdi; est donc égal a (f(;),€;) et, par
bilinéarité : V(z,y) € E2, (z, f(y)) = (f(x),y), donc f est autoadjoint. O

COROLLAIRE 22 (Version matricielle du théoreme spectral)
Si A € §,(R) est une matrice symétrique réelle, alors il existe une matrice orthogonale P € O, (R) telle
que P7'AP = PTAP est une matrice diagonale.

Autrement dit : toute matrice symétrique réelle est orthogonalement diagonalisable.

Preuve — Soit f I’endomorphisme représenté par A dans une base orthonormée B. Cet endomorphisme f est autoadjoint,
d’ol il existe une base orthonormée B’ dans laquelle la matrice D de f est diagonale d’apres le théoréme spectral. Soit P la
matrice de passage de B & B’, alors :

— la matrice D = P~ 1 AP est diagonale;
— la matrice P est orthogonale (P! = PT) car c’est la matrice de passage d’une base orthonormée vers une base
orthonormée.

O

DEFINITION 23
On dit qu'un endomorphisme autoadjoint f € S(E) d'un espace euclidien E est :

(i) positifsi Ve e E, (z, f(x)) >0;
(ii) défini positif s'il est positif et Va € E, [(z, f(x)) =0 = 2 = 0g].

Autrement dit : si  Vax € E\ {0g}, (z, f(z)) > 0.

On dit de méme qu’une matrice symétrique M € S, (R) est :
(i) positivesi VX € M,;1(R), XTMX >0;
(ii) définie positive si elle est positive et VX € M1 (R), [XTMX =0 = X =0].

Autrement dit : si VX € My (R) \ {Opq,, 1)}, XTMX > 0.

On note ST(E) l'ensemble des endomorphismes autoadjoints positifs et ST (E) I'ensemble des
endomorphismes autoadjoints définis positifs. De méme, S;7 (R) est I'ensemble des matrices symétriques
positives et STT(R) I'ensemble des matrices symétriques définies positives.
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THEOREME 24
Un endomorphisme autoadjoint est :

(i) positif si, et seulement si, toutes ses valeurs propres sont positives;
(i) défini positif si, et seulement si, toutes ses valeurs propres sont strictement positives.

De méme pour une matrice symétrique. Autrement dit :

feST(E) «— fe Sk et Sp(f) C Ry
feSTH(E) <+ feS(F) et Sp(f) C Ry
M € S (R) <~ MeS,(R) et Sp(M)C R,
MeSHT(R) <<= MeS,(R) et Sp(M)cC Ry

Preuve — Sans le théoreme spectral dans un sens : supposons que f est autoadjoint et positif. Alors, pour tout z € E,

(z, f(z)) > 0. En particulier, si A est une valeur propre de f, alors il existe un vecteur = # O tel que f(z) = Az. Pour ce
vecteur, {(z, f(x)) = (x,Az) = A||z||2 > 0. Or ||z||2 > 0 car = # 0. D’ot A > 0.

De méme, si f est défni positif, alors (z, f(z)) = A||z||? > 0, donc A > 0 car [|z]|2 > 0.

Avec le théoréeme spectral dans ’autre sens : supposons que f est autoadjoint et que toutes ses valeurs propres sont
positives. Grace au théoréme spectral, on se place dans une base adaptée, une bon (1, - ,eyn) formée de vecteurs propres :
Vi € [1,n], f(ei) = Aiei. Tout vecteur z € E se décompose dans cette base : & = x1€1 + - - - + Tnen. On calcule, en utilisant

n
le fait que la base est orthonormée : | (z, f(z)) = Mz? + - - + Apz2 = Z Miz2. | Par hypothese, chaque A; est positif, donc
i=1

(z, f(z)) > 0 car c’est une somme de réels positifs.

Supposons maintenant que toutes les valeurs propres sont strictement positives :

— (premiére rédaction) si ¢ # Op, alors il existe au moins une coordonnée z; non nulle. D’olt )\ix% > 0. On y ajoute des
réels positifs pour obtenir (z, f(x)), qui est donc strictement positif.

— (seconde rédaction) si la somme de termes positifs (z, f(z)) est nulle, alors chaque terme est nul : Vi € [1,n], A;z? = 0.
Or chaque A; est non nul par hypothese, d’out chaque z; est nul, donc z = 0g.

a

XII.6 ROTATIONS & REFLEXIONS

DEFINITION 25
Soit £ un R—espace vectoriel de dimension finie. On dit que deux bases By et B de E ont la méme
orientation si le déterminant de la matrice de passage de By a B est strictement positif.

Pour orienter I'espace vectoriel E, on choisit une base By de E. On dit alors qu'une base B est directe
si By et B ont la méme orientation, indirecte sinon.

F1cure XII.2 — Aire d’un parallélogramme

EXEMPLE 26 — On oriente le plan R? en décidant que la base canonique By = (7)) est directe, puis on
munit R? du produit scalaire canonique : By est alors une base orthonormée directe (bond) de R2. Soient
deux vecteurs U = av'+ b) et v = ci’+ dj. Le déterminant

c

det(d.7) = |}

g = ad — be

posséde :
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— un signe (s’il est strictement positif, alors (i, V) est une base directe; s’il est strictement négatif,
alors (4, V) est une base indirecte ; s’il est nul, alors (d,V) n’est pas une base car @ et U sont liés) ;
— une valeur absolue, €gale a l'aire du parallélogramme construit sur les vecteurs U et U.
Les trois parallélogrammes de la figure X11.2 ont en effet la méme aire, égale a

|det(@, ¥)| = |ad — bc|.

EXEMPLE 27 — On oriente l'espace R3 en décidant que la base canonique By = (7,7, k) est directe.
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FIGURE XII.3 — LA REGLE DE LA MAIN DROITE (OU DU TIRE-BOUCHON)

DEFINITION 28

Soit E un espace euclidien de dimension n. On dit que :
(1) f est une rotation si f est une isométrie de déterminant +1, autrement dit : si [f]p.0.n. € SO, (R);
(ii) f est une réflexion si f est une symétrie orthogonale par rapport a un hyperplan de E.

REMARQUE 29 — Soit E un espace euclidien de dimension n.
1. Un endomorphisme de E est :
— une isométrie si, et seulement si, il transforme une bon en une bon ;
— une rotation si, et seulement si, il transforme une bond en une bond.
2. Les rotations de E forment un groupe, noté SO(E), qui est un sous-groupe du groupe O(FE) des
isométries de E. De méme que SO, (R) est un sous-groupe de O, (R).

3. Si f est une réflexion par rapport a un hyperplan H de E, alors sa matrice dans une base adaptée a
I,1 0

0 -1
égal a —1. Et la composée de deux réflexions est donc une rotation.

la somme directe H @& H s’écrit ) . Le déterminant d’une réflexion est donc toujours

THEOREME 30 (Les isométries du plan)
Une matrice appartient a O2(R) si, et seulement si, elle est de la forme :

) cosf) —sinf . cosf sinf
ou bien  Fp = (sinG cos ) » oubien Sy = (sinG — cos 9> ’

Son déterminant vaut +1 dans le premier cas, —1 dans le second.

Preuve — Une matrice M appartient & O2(R) si, et seulement si, ses colonnes C; et C2 forment une bon :

sin 0

0
[Cil=1 <> IR, C; = (COS ) ;

[Cal =1 <= FpER, Co= (C?W) ;
sin ¢

C1 1 C2 <= 0=coslcosp+sinlsinp =cos(p —0) <= ¢ —0= 73 +kn (kcZ).
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XIL.6. ROTATIONS & REFLEXIONS

Donc : ou bien ¢ = 0 + § + 2k7 et alors M = Ry ; ou bien ¢ = 0 + 5 + (2k + 1)m et alors M = Sp. O

COROLLAIRE 31
Les isométries du plan sont les rotations (autour de I'origine) et les réflexions (par rapport a une droite
passant par |'origine).

REMARQUE 32 — 1. V(0,¢) € R?, Rg- R, = Ro1, = R, - Ry. Le groupe SO5(R) est donc commutatif
et application R — SO5(R), 6 — Ry est un morphisme du groupe (R, +) vers le groupe (SO2(R), ).
Ce morphisme est surjectif mais pas injectif (car son noyau est 2wZ).
2. Au lieu de repérer un point du plan par ses coordonnées (x,y) € R2, on peut le repérer par son affize
z=x+1iy € C.

(a) Aprés une rotation, la position du point M’ sera repérée par les coordonnées :

Al - .
<;/> =Ry <z> — 2 =e?. 2

L application U — SO5(R), e — Ry est un isomorphisme de groupes
(b) Aprés une réflexion, la position du point M’ sera repérée par les coordonnées :

!
(§/> = Sp- (;) =Ry (jy) — =¢?. 3.

Le théoreme suivant montre que les isométries de ’espace sont les rotations et les composées d’une
rotation et d’une réflexion (et pas seulement, comme en dimension deux, les rotations et les réflexions).

THEOREME 33 (Les isométries de I'espace)
f est une isométrie de |'espace si, et seulement si, il existe un angle 6 € R et une bond B = (&, ¥, W) tels
que :

f@  f@) ) f@  f)  fw)

U [cosf —sinfd O U (cosf —sinfd O

oubien [flp= ¥ | sinf cosd 0 |, oubien [flg= ¥ | sinf cosd 0
w 0 0 1 W 0 0 -1

Dans le premier cas, det(f) = 41 et f est la rotation d’angle 6 autour de I'axe dirigé et orienté par .

Dans le second cas, det(f) = —1 et f est la composée de la méme rotation et de la réflexion par rapport
au plan orthogonal a I'axe de rotation car

cosf) —sinf 0 cosf) —sinf 0 1 0 0 1 0 0 cosf) —sinf 0
sind cosf 0 | =|sinfd cosé 01J]-{0 1 O0|]=101 0| -|sinf cosH 0
0 0 —1 0 0 +1 0 0 -1 0 0 -1 0 0 +1

Preuve — Le polynome caractéristique de f posséde au moins une racine réelle car il est de degré 3. D’out f possede au
moins une valeur propre réelle A\. Or A € {—1;+1} car || f(Z)|| = ||Z]] pour tout vecteur Z. D’ou : si & est un vecteur propre
associé & une valeur propre A, alors f(Z) = AZ et & # 0. D’ou ||Z|| = ||f(Z)|| = |A| - |Z]] et ||Z]| # 0. Donc |A| = 1.

11 existe donc une bond (£3,€3,€3) dans laquelle la matrice de f est de la forme :

_[(Rg 0 _(Rg 0 _(Se O _(Sy O
A1—(0 +1> ouAg—(O _1) ouAg—(O 11 ou Ay = 0 —1)-
En effet, il existe un vecteur propre €3 (que 'on peut normer) associé & une valeur propre +1. Le sev Vect(€3) est stable par
f. D’ou (proposition 18) : le plan (Vect(f;‘_é))l est aussi stable par f. Or f est une isométrie, d’ou la restriction de f a ce

plan est aussi une isométrie, donc : dans une bon (£1,€2) de ce plan, sa matrice 2 X 2 sera de la forme Ry ou Sy d’apres le
théoreme 30.
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CHAPITRE XII. ENDOMORPHISMES REMARQUABLES D’UN ESPACE EUCLIDIEN

Les matrices A1 et Az sont bien de la forme voulue. Dans les matrices A3z et A4, le bloc Sy se diagonalise sous la forme

1 0 N N . . P .
( ) dans une bon. D’ol, apreés avoir changé ’ordre des vecteurs de base, on peut réécrire les matrices Az et A4 dans

0 -1
Al — +13 0 _ Ro 0 " ;o —1I2 0 _ Rx 0
3=\Vo —1)7 Lo -1 & “4={o +1)7\o0o 11

une bond :
qui sont bien de la forme voulue. O

REMARQUE 34 — En dimension 2, le théoréme 50 dit bien que toute matrice de O2(R) est égale a une
matrice de la forme Ry € SO2(R) ou Sy € O3(R) \ SO2(R).

Par contre, en dimension 3, le théoréme 35 dit seulement que toute matrice de O3(R) est semblable a

une matrice de la forme (Pée 4?1) € SO3(R) ou <F59 _01> € O3(R) \ SO3(R).

En dimension n € N* quelconque, il est également possible de réduire une isométrie :

THEOREME 35
Soient E un espace euclidien et f une isométrie : E est la somme directe et orthogonale de Ker(idg — f),
de Ker(—idg — f) et/ou de plans P; stables par f sur lesquels f induit une rotation.

Preuve — Par une récurrence forte sur la dimension n de E :

— si n =1, alors la matrice de f est (l) ou (—l) ;

— si n = 2, alors, d’apres le théoreme 30, ou bien f est une rotation, ou bien f est une réflexion et sa matrice est alors
semblable & diag(1,—1);

— Sin > 2, alors supposons la propriété vraie aux rangs précédents. On sait (exercice 34 du chapitre V) qu’il existe
une droite ou un plan stable par f (ceci est vrai de tout endomorphisme) : notons F' ce sev stable. On en déduit
(proposition 18) que F'* est aussi stable par f (ceci est vrai car f est une isométrie). Or ce sev F- est de dimension
strictement inférieure & n, on peut donc lui appliquer I’hypothese de récurrence, ce qui conclut la preuve.

O

COROLLAIRE 36 (Réduction d’une isométrie en base orthonormée)
Si f est une isométrie d'un espace euclidien E, alors il existe (p,q) € N?, des réels 61, ... 60} et une base
orthonormée B de F tels que :

R,

[f]B: ; Ry

cosf —sinb

olion note Rg = | .
0 (sm9 cost

). Autrement dit : pour toute matrice A € O(n), il existe P € O(n) telle

que P~'AP = PT AP est de la forme diagonale par blocs ci-dessus.

Preuve — On peut, grace a ’algorithme de Gram-Schmidt, rendre orthonormée la base des deux sous-espaces propres
Ker(idg — f) et Ker(—idg — f). Et le théoréme 30 nous assure que la rotation induite sur chaque plan P; est représentée
dans une bon par une matrice Ry,. La concaténation de ces bases orthonormées est bien une bon (car la somme des sev est

orthogonale d’apres le théoréme 35), ce qui justifie que la matrice de passage P appartient & O(n). O
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