Colle 14 Variables aléatoires

BRAHIMI Dhyae

Exercice 1. 1. Soit X une variable aléatoire a valeurs dans N.

(a) Montrer que, pour tout n € N*, on a :

n—1

ikP(X =k) =) P(X >k)—nP(X >n).
k=0 k=0

(b) On suppose que >4 25 P(X > k) converge. Démontrer que X admet une espérance.
(¢) Réciproquement, on suppose que X admet une espérance. Démontrer alors que (nP(X > n))n

tend vers 0, puis que la série Zﬁ:& P(X > k) converge, et enfin que
+oo
E(X) =) P(X > k).
k=0

2. Application : on dispose d’une urne contenant N boules indiscernables au toucher numérotées de 1
a N. On effectue, a partir de cette urne, n tirages successifs d’une boule, avec remise, et on note X
le plus grand nombre obtenu.

(a) Que vaut P(X < k)? En déduire la loi de X.

(b) A laide des questions précédentes, donner la valeur de E(X).

N-1 n
1 k
(¢) A laide d’une somme de Riemann, démontrer que la suite ( () ) admet une
N

limite (lorsque N tend vers +o00) que l'on déterminera.

E(X) n
d) En dédui li o) .
(d) En déduire que limy_, 4 N 1

3. Montrer que si X admet un moment ’ordre 2, alors

E(X?) = +ZOO(% + DP(X > k).
k=0



Solution 1. 1. (a) Pourn > 1, on peut écrire :

n n n—1
kP =Y k(P(X>k—1)-P(X >k)=> (k+1-kP(X >k) —nP(X >n)+P(X >0)
k=0 k=1 k=1
n—1
= Y P(X>k)-nP(X >n).
k=0
n —+oo
(b) On a, pour tout entier n, ZkP = Z]P (X > k). La suite des sommes partielles
k=0 =0

d’une série a termes positifs est magjorée. C’ est que la série converge.
(¢) Si X admet une espérance, la série Y kP(X = k) converge. Mais :

0<nP(X>n)=n Y PX=k< > kPX=
k=n+1 k=n+1

Ce dernier terme tend vers 0, lorsque n tend vers l'infini, comme reste d’une série convergente.
o0
Donc : B(X) = Y P(X > k).

(d) i. On a X <k si et seulement si les n épreuves ont amené un résultat inférieur ou égal a k,

et on a donc :
k

k n n
P(X <Ek)=|— P(X =1-({—=] .
x=n-(y) = ra=n-1-(5)
Quant a la loi de X, on trouve, pour 1 <k < N :
k™ — (k—1)"

PX=k=PX<k)-PX<k-1)= -

ii. Par la question précédente : E(X) = N — Zi\:ol (%)n
iii. On reconnait ici une somme de Riemann de la fonction x — x™, continue sur [0,1]. On a
donc, pour N qui tend vers linfini :

N-1 n 1
1 k 1
P —_— ~ nd == .
NkZ:0 (N) /Ox Tl

w. On a :
E(X) 1 = no_n
N N n+l n+1
(e) On utilise le méme type d’argument :
n n n—1
Y P(X =k) = Y FPPX>k-1)-PX >k)=> (2k+1)P(X > k) —n’P(X >n).
k=0 k=0 k=0

Si X admet une variance, X admet un moment d’ordre 2, et la série > k2P(X = k) converge.
Mais : - -
0<n’P(X>n)=n*> Y PX=k< Y IFPX=
k=n+1 k=n+1
Ce dernier terme tend vers 0 lorsque n tend vers l'infini, et donc :

E(X?) = f@k +D)P(X > k).
k=0



DOUCET-POURNIN Louka

Exercice 2. Quatre individus vivent dans la forét, chacun se déplagant avec un bidon d’eau. L’eau étant
un bien précieux, ils décident de partager leurs réserves d’eau équitablement des que deux d’entre eux se
croisent.
Autrement dit, si deux individus se rencontrent et si 'on note a et b leurs réserves d’eau (exprimées en
litres) avant la rencontre, ils repartent chacun avec une réserve d’eau égale & (a + b)/2. Les rencontres se
font uniformément au hasard, et toujours deux par deux.

1. Modéliser la situation en supposant qu’il y a une infinité de rencontres.

2. Justifier que presque strement la suite des réserves est constante a partir d’un certain rang.

3. Donner un exemple d’une situation théorique ou la suite des réserves n’est pas constante a partir
d’un certain rang.

4. Justifier que la suite des réserves converge.

Solution 2.
1. On numérote les individus de 1 a 4. Pour tout k € [1,4] et tout n € N, on appelle x} la quantité
d’eau de lindividu k a l'étape n (aprés n rencontres). et on pose x™ = (x%, 2%, 2%, 2%) € R*. La
suite (x"), cy sera appelée la suite des réserves. On pose

R = {{Z’]}7Z7] € [174ﬂ7i #J} - [[174ﬂ2

et pour tout n € N*, on note R,, € R représente le couple d’individus concernés par la rencontre n.
Les rencontres sont indépendantes et uniformes, donc
NP o 1 1 1
Vn € N, V{i,j} € R, P(R,=1{ij}) = g =T "6
(=)
Pour tout {i,j} € R, on note fg; jy Uapplication de R* dans R* qui a v = (v1,22,73,74) associe
x' = (2}, 2, x%, x)) défini par :

(xl+$])/2 Sike{i,j}

"
vk el4], @ = { Tk sinon

Ainsi, lors de la rencontre n + 1, si les individus i et j qui se croisent, alors x" ! = Ty (™).

2. Supposons que les rencontres 4k, 4k+1, 4k+2, 4k+3 soient les suivantes : 1 rencontre 2 ;3 rencontre
4;1 rencontre 4;2 rencontre 8 (en d’autres termes, Rar = {1,2}, Rax+1 = {3,4}, Rapr2 = {1,4} et
Rup+s ={2,3} ). Alors, a lissue de ces 4 rencontres, la suite des réserves est constante :

1 2 3 4
Tap + Tgp + Ty + Ty
4

Vn > 4,Vk € [1,4], z =



A
La probabilité pour que cette suite se produise auz rangs 4k a 4k + 3 est p = (6) .

Pour tout i € N*, on a :
BiUByU---UDBj_1 C Ay
Par hypothése, les By, sont indépendants et
k—1
P(Ag) > P(BiUByU---UBgy) > 1— [[P(B;) >1-(1-p)*.
i=0
On en déduit que limg_, oo P (Ag) = 1.
Appelons A I’événement « la suite (x™), o est constante a partir d’'un certain rang >. On a A =

+oo
Ay, or (Ap) ey est croissante pour linclusion donc :
k=0

“+o0
P(A) =P <U Ak> = kBTmP(A’“) =1
k=0
0

. Supposons que x7, :cg et :cg ne sont pas tous les trois égaux et on suppose les rencontres

Raiy1 = {1,2}, Rspy2=1{2,3}, Raryz={3,1}.
2

Soit 1 = 2% = 3 (cas ot 29+12§ = 229), les trois premiers individus n’ont jamais la méme quantité
d’eau : une configuration (a,a,b) avec a # b ne peut jamais donner (c,c,c) en faisant la moyenne
de deux d’entre eux!

. Montrons que la suite des réserves (x"),, oy converge toujours. Pour tout x € R%, on pose :

Ua) =Y o —

i<j

(@) + i — @] < ()

ot ' = fr; j1(x). Montrons-le dans le cas ou i =1 et j = 2. Alors :

0(z") =2(x1 +22) /2 — 23] + 2 |(21 + 22) /2 — 24| + |23 — 74]
= |z1 — 23+ 29 — 23| + |11 — T4 + T2 — 74| + |23 — 4]
Par Uinégalité triangulaire, on obtient bien que £ (z') + |z — 22| < £(x). On déduit en particulier de
cette inégalité que la suite (€ (")), est décroissante. Comme elle est minorée par 0 , elle converge.

Posons pour tout x € R*, ||z||, = 22=1 |zk|. Pour tout n € N on a, par un calcul immédiat :

l = 2"ly = gy (@) = 2"[l, = [aF =2} < L") = £ (")

J
Alors, pour tout n € N et tout k € [1,4] :

‘mﬁ“ — :1:2’ <Ll(z™) -4 (33”+1)

Comme la suite (¢ (z")),,5, converge, la série Y, -, (¢ (z™) — £ (2"T1)) converge également. La sé-

: n+1 n 5017 : n
Ti€ Y 50 (z) 7 — a}t) est donc absolument convergente. On en déduit que la suite (xk)nzo converge

pour tout k € [1,4], ce qui signifie bien que la suite des réserves converge.

Remarque : posons (a:(l’, 9, 29, xg) = (a,b,¢,d). Dans le cas particulier imaginé précédemment (ren-
contres 1-2, 2-3, 8-1, 1-2, 2-8, 3-1 etc.), (v}]),cy est constante égale a d, tandis que pour tout
i € [1,3],(2}), ey converge vers (a + b+ c)/3. En effet, posons £; = lim, o x7. Pour com-
mencer, pour tout n € N, on a 27 + 23 + 25 = a + b+ ¢, donc un passage a la limite donne
01+ Uy + 03 = a+ b+ c. Ensuite, pour tout k € N, on a x50 = g38 1 e 23572 = 23842 U qutre
passage & la limite, lorsque k tend vers +o0o dans ces relations, fournit {1 = Uy et o = l3. On a
donc bien b1 =4y =43 = (a+ b+ c)/3.



SAUVETRE Baptiste

Exercice 3. Une fonction f convexe sur un intervalle I de R de longueur non nulle est une fonction telle
que
Vo,y €I, Vt € [0,1], f(tz+ (1 —t)y) <tf(x)+ (1 -1)f(y).

Lors d’une soirée, n amis (n > 2) jouent au jeu suivant. Chacun met un euro sur la table et inscrit pile
ou face sur un papier sans que les autres puissent connaitre son choix. Un serveur lance ensuite une piece
équilibrée. La somme de n euros est partagée (théoriquement sous forme fractionnaire) entre les gagnants
(ceux qui ont fait le bon choix). S’il n’y a pas de gagnant, on donne la somme totale au serveur en guise
de pourboire.

1. Pour k € {1,...,n}, on note X, la somme aléatoire que recoit le joueur k. Calculer 'espérance de
Xk.

2. Dans cette question, on suppose qu’une nouvelle personne arrive avant que la pieéce ne soit lancée.
On demande a un joueur s’il accepte que cette nouvelle personne participe au jeu.
Que doit répondre ce joueur s’il veut maximiser le gain espéré? Quel doit étre I'avis du serveur si
il veut maximiser le pourboire espéré ?

3. Soit f une fonction convexe sur un intervalle I de R.
(a) Montrer par récurrence que pour tout entier n > 2, pour tout n-uplet (1, ...,x,) de points de
n

I et tout n-uplet (t1,...,t,) de réels positifs tel que Zti =1,ona:
i=1

frzy + oo+ tpzy) <tif(z) + .o+ tnf(xn).

(b) Soit X une variable aléatoire ne prenant qu’un nombre fini de valeurs contenues dans I. Montrer
que :
FEX)) < B(f(X)).
4. On se place a nouveau dans un jeu a n joueurs.
(a) Calculer E(X?) sous forme d’une somme finie.

(b) Montrer que :



Solution 3.

1. Posons S, = X1 + - -+ X, la variable aléatoire a valeur dans {0,n}.
(S, = 0) ssi tous les joueurs perdent. Les variables X; sont indépendantes de loi de Bernoulli de

1 n
paramétre 1/2. P(S, =0) = (2> . On en déduit

1 n
On en déduit que E(X) =1 — (2) .

2. Le gain moyen augmente avec le nombre de joueurs, donc le joueur a intérét d’accepter un nouveau
joueur.

Par contre, le gain moyen du serveur est % et T +— 2% est décroissante pour x > 2. Donc le serveur
a intérét a refuser le nouvel arrivant.
3. Soit f : I — R une fonction convexe.
(a) Une récurrence avec utilisation du barycentre partiel donne le résultat (¢’est du cours).
(b) Une application directe du théoréme de transfert permet de conclure.

4. Si Gy, est I'évenement le joueur k gagne et Y le nombre de gagnants différents de k, on a

indépendants 1 n—1 "
P(Xy =n/r)=PY =r—1NGy) = IP(Y:r—l)IP(Gk)=§>< 1)\ 3 , car

Y suit une loi binomiale de paramétre n — 1 et 1/2.

S EHIORS Sl CSION

r=1 r=0

1 1
La fonction g : © — m est conveze et soit U une lot binomiale de paramétres n — 1 et 3 La
x
question précédente donne
2 n-1 n—1 2 2
n 1 n—1 1 n n
EX})=—Y — = = — xE(gU)) > — x g(B(U
ch=5 gre( ) (5) = men 2 G xame)
n? 1 2n?
= — X 3 frd
2 ((n-1)xi+1)° (@+1)



