
Colle 14 Variables aléatoires

BRAHIMI Dhyae

Exercice 1. 1. Soit X une variable aléatoire à valeurs dans N.

(a) Montrer que, pour tout n ∈ N∗, on a :

n∑
k=0

kP (X = k) =

n−1∑
k=0

P(X > k)− nP (X > n).

(b) On suppose que
∑+∞

k=0P(X > k) converge. Démontrer que X admet une espérance.

(c) Réciproquement, on suppose que X admet une espérance. Démontrer alors que
(
nP (X > n)

)
n

tend vers 0, puis que la série
∑+∞

k=0P(X > k) converge, et enfin que

E(X) =

+∞∑
k=0

P(X > k).

2. Application : on dispose d’une urne contenant N boules indiscernables au toucher numérotées de 1
à N . On effectue, à partir de cette urne, n tirages successifs d’une boule, avec remise, et on note X
le plus grand nombre obtenu.

(a) Que vaut P(X ≤ k) ? En déduire la loi de X.

(b) A l’aide des questions précédentes, donner la valeur de E(X).

(c) A l’aide d’une somme de Riemann, démontrer que la suite

(
1

N

N−1∑
k=0

(
k

N

)n
)

N

admet une

limite (lorsque N tend vers +∞) que l’on déterminera.

(d) En déduire que limN→+∞
E(X)

N
=

n

n + 1
.

3. Montrer que si X admet un moment ’ordre 2, alors

E(X2) =

+∞∑
k=0

(2k + 1)P(X > k).
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Solution 1. 1. (a) Pour n ≥ 1, on peut écrire :

n∑
k=0

kP (X = k) =

n∑
k=1

k (P(X > k − 1)− P(X > k)) =

n−1∑
k=1

(k + 1− k)P(X > k)− nP (X > n) + P(X > 0)

=

n−1∑
k=0

P(X > k)− nP (X > n).

(b) On a, pour tout entier n,

n∑
k=0

kP (X = k) ≤
+∞∑
k=0

P(X > k). La suite des sommes partielles

d’une série à termes positifs est majorée. C’est que la série converge.

(c) Si X admet une espérance, la série
∑

kP(X = k) converge. Mais :

0 ≤ nP (X > n) = n

∞∑
k=n+1

P(X = k) ≤
∞∑

k=n+1

kP (X = k).

Ce dernier terme tend vers 0, lorsque n tend vers l’infini, comme reste d’une série convergente.

Donc : E(X) =

+∞∑
k=0

P(X > k).

(d) i. On a X ≤ k si et seulement si les n épreuves ont amené un résultat inférieur ou égal à k,
et on a donc :

P(X ≤ k) =

(
k

N

)n

=⇒ P(X > k) = 1−
(

k

N

)n

.

Quant à la loi de X, on trouve, pour 1 ≤ k ≤ N :

P(X = k) = P(X ≤ k)− P(X ≤ k − 1) =
kn − (k − 1)n

Nn
.

ii. Par la question précédente : E(X) = N −
∑N−1

k=0

(
k
N

)n
.

iii. On reconnait ici une somme de Riemann de la fonction x 7→ xn, continue sur [0, 1]. On a
donc, pour N qui tend vers l’infini :

1

N

N−1∑
k=0

(
k

N

)n

∼
∫ 1

0

xndx =
1

n + 1
.

iv. On a :

E(X)

N
= 1− 1

N

N−1∑
k=0

(
k

N

)n

→ 1− n

n + 1
=

n

n + 1
.

(e) On utilise le même type d’argument :

n∑
k=0

k2P (X = k) =

n∑
k=0

k2 (P(X > k − 1)− P(X > k)) =

n−1∑
k=0

(2k + 1)P(X > k)− n2P (X > n).

Si X admet une variance, X admet un moment d’ordre 2, et la série
∑

k2P (X = k) converge.
Mais :

0 ≤ n2P (X > n) = n2
∞∑

k=n+1

P(X = k) ≤
∞∑

k=n+1

k2P (X = k).

Ce dernier terme tend vers 0 lorsque n tend vers l’infini, et donc :

E(X2) =

+∞∑
k=0

(2k + 1)P(X > k).
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DOUCET–POURNIN Louka

Exercice 2. Quatre individus vivent dans la forêt, chacun se déplaçant avec un bidon d’eau. L’eau étant
un bien précieux, ils décident de partager leurs réserves d’eau équitablement dès que deux d’entre eux se
croisent.
Autrement dit, si deux individus se rencontrent et si l’on note a et b leurs réserves d’eau (exprimées en
litres) avant la rencontre, ils repartent chacun avec une réserve d’eau égale à (a+ b)/2. Les rencontres se
font uniformément au hasard, et toujours deux par deux.

1. Modéliser la situation en supposant qu’il y a une infinité de rencontres.

2. Justifier que presque sûrement la suite des réserves est constante à partir d’un certain rang.

3. Donner un exemple d’une situation théorique où la suite des réserves n’est pas constante à partir
d’un certain rang.

4. Justifier que la suite des réserves converge.

Solution 2.

1. On numérote les individus de 1 à 4. Pour tout k ∈ [[1, 4]] et tout n ∈ N, on appelle xn
k la quantité

d’eau de l’individu k à l’étape n (après n rencontres). et on pose xn = (xn
1 , x

n
2 , x

n
3 , x

n
4 ) ∈ R4. La

suite (xn)n∈N sera appelée la suite des réserves. On pose

R = {{i, j}, i, j ∈ J1, 4K, i 6= j} ⊂ J1, 4K2

et pour tout n ∈ N∗, on note Rn ∈ R représente le couple d’individus concernés par la rencontre n.
Les rencontres sont indépendantes et uniformes, donc

∀n ∈ N∗,∀{i, j} ∈ R, P (Rn = {i, j}) =
1

|R|
=

1(
4
2

) =
1

6

Pour tout {i, j} ∈ R, on note f{i,j} l’application de R4 dans R4 qui à x = (x1, x2, x3, x4) associe
x′ = (x′1, x

′
2, x
′
3, x
′
4) défini par :

∀k ∈ J1, 4K, x′k =

{
(xi + xj) /2 si k ∈ {i, j}

xk sinon

Ainsi, lors de la rencontre n + 1, si les individus i et j qui se croisent, alors xn+1 = f{i,j} (xn).

2. Supposons que les rencontres 4k, 4k+1, 4k+2, 4k+3 soient les suivantes : 1 rencontre 2 ;3 rencontre
4; 1 rencontre 4; 2 rencontre 3 (en d’autres termes, R4k = {1, 2}, R4k+1 = {3, 4}, R4k+2 = {1, 4} et
R4k+3 = {2, 3} ). Alors, à l’issue de ces 4 rencontres, la suite des réserves est constante :

∀n > 4,∀k ∈ J1, 4K, xn
k =

x1
4k + x2

4k + x3
4k + x4

4k

4
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La probabilité pour que cette suite se produise aux rangs 4k à 4k + 3 est p =

(
1

6

)4

.

Pour tout i ∈ N∗, on a :
B1 ∪B2 ∪ · · · ∪Bk−1 ⊂ A4k

Par hypothèse, les Bk sont indépendants et

P (Ak) > P(B1 ∪B2 ∪ · · · ∪Bk−1) ≥ 1−
k−1∏
i=0

P
(
B̄i

)
≥ 1− (1− p)k.

On en déduit que limk→+∞ P (Ak) = 1.
Appelons A l’événement « la suite (xn)n∈N est constante à partir d’un certain rang >. On a A =
+∞⋃
k=0

Ak, or (Ak)k∈N est croissante pour l’inclusion donc :

P(A) = P

(
+∞⋃
k=0

Ak

)
= lim

k→+∞
P (Ak) = 1

3. Supposons que x0
1, x0

2 et x0
3 ne sont pas tous les trois égaux et on suppose les rencontres

R3k+1 = {1, 2}, R3k+2 = {2, 3}, R3k+3 = {3, 1}.

Soit x1
1 = x2

1 = x3
1 (cas où x0

1+x0
2 = 2x0

3), les trois premiers individus n’ont jamais la même quantité
d’eau : une configuration (a, a, b) avec a 6= b ne peut jamais donner (c, c, c) en faisant la moyenne
de deux d’entre eux !

4. Montrons que la suite des réserves (xn)n∈N converge toujours. Pour tout x ∈ R4, on pose :

`(x) =
∑
i<j

|xi − xj |

On a

` (x′) + |xi − xj | 6 `(x)

où x′ = f{i,j}(x). Montrons-le dans le cas où i = 1 et j = 2. Alors :

` (x′) = 2 |(x1 + x2) /2− x3|+ 2 |(x1 + x2) /2− x4|+ |x3 − x4|
= |x1 − x3 + x2 − x3|+ |x1 − x4 + x2 − x4|+ |x3 − x4|

Par l’inégalité triangulaire, on obtient bien que ` (x′)+ |x1 − x2| 6 `(x). On déduit en particulier de
cette inégalité que la suite (` (xn))n>0 est décroissante. Comme elle est minorée par 0 , elle converge.

Posons pour tout x ∈ R4, ‖x‖1 =
∑4

k=1 |xk|. Pour tout n ∈ N on a, par un calcul immédiat :∥∥xn+1 − xn
∥∥
1

=
∥∥f{i,j} (xn)− xn

∥∥
1

=
∣∣xn

i − xn
j

∣∣ 6 ` (xn)− `
(
xn+1

)
Alors, pour tout n ∈ N et tout k ∈ J1, 4K :∣∣xn+1

k − xn
k

∣∣ 6 ` (xn)− `
(
xn+1

)
Comme la suite (` (xn))n>0 converge, la série

∑
n>0

(
` (xn)− `

(
xn+1

))
converge également. La sé-

rie
∑

n>0

(
xn+1
k − xn

k

)
est donc absolument convergente. On en déduit que la suite (xn

k )n≷0 converge

pour tout k ∈ J1, 4K, ce qui signifie bien que la suite des réserves converge.
Remarque : posons

(
x0
1, x

0
2, x

0
3, x

0
4

)
= (a, b, c, d). Dans le cas particulier imaginé précédemment (ren-

contres 1-2, 2-3, 3-1, 1-2, 2-3, 3-1 etc.), (xn
4 )n∈N est constante égale à d, tandis que pour tout

i ∈ J1, 3K, (xn
i )n∈N converge vers (a + b + c)/3. En effet, posons `i = limn→+∞ xn

i . Pour com-
mencer, pour tout n ∈ N, on a xn

1 + xn
2 + xn

3 = a + b + c, donc un passage à la limite donne
`1 + `2 + `3 = a + b + c. Ensuite, pour tout k ∈ N, on a x3k+1

1 = x3k+1
2 et x3k+2

2 = x3k+2
3 . Un autre

passage à la limite, lorsque k tend vers +∞ dans ces relations, fournit `1 = `2 et `2 = `3. On a
donc bien `1 = `2 = `3 = (a + b + c)/3.
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SAUVETRE Baptiste

Exercice 3. Une fonction f convexe sur un intervalle I de R de longueur non nulle est une fonction telle
que

∀x, y ∈ I, ∀t ∈ [0, 1], f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y).

Lors d’une soirée, n amis (n ≥ 2) jouent au jeu suivant. Chacun met un euro sur la table et inscrit pile
ou face sur un papier sans que les autres puissent connâıtre son choix. Un serveur lance ensuite une pièce
équilibrée. La somme de n euros est partagée (théoriquement sous forme fractionnaire) entre les gagnants
(ceux qui ont fait le bon choix). S’il n’y a pas de gagnant, on donne la somme totale au serveur en guise
de pourboire.

1. Pour k ∈ {1, ..., n}, on note Xk la somme aléatoire que reçoit le joueur k. Calculer l’espérance de
Xk.

2. Dans cette question, on suppose qu’une nouvelle personne arrive avant que la pièce ne soit lancée.
On demande à un joueur s’il accepte que cette nouvelle personne participe au jeu.
Que doit répondre ce joueur s’il veut maximiser le gain espéré ? Quel doit être l’avis du serveur si
il veut maximiser le pourboire espéré ?

3. Soit f une fonction convexe sur un intervalle I de R.

(a) Montrer par récurrence que pour tout entier n ≥ 2, pour tout n-uplet (x1, ..., xn) de points de

I et tout n-uplet (t1, ..., tn) de réels positifs tel que

n∑
i=1

ti = 1, on a :

f(t1x1 + ... + tnxn) ≤ t1f(x1) + ... + tnf(xn).

(b) Soit X une variable aléatoire ne prenant qu’un nombre fini de valeurs contenues dans I. Montrer
que :

f(E(X)) ≤ E(f(X)).

4. On se place à nouveau dans un jeu à n joueurs.

(a) Calculer E(X2
k) sous forme d’une somme finie.

(b) Montrer que :

E(X2
k) ≥ 2n2

(n + 1)2
.
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Solution 3.

1. Posons Sn = X1 + · · ·+ Xn la variable aléatoire à valeur dans {0, n}.
(Sn = 0) ssi tous les joueurs perdent. Les variables Xi sont indépendantes de loi de Bernoulli de

paramètre 1/2. P(Sn = 0) =

(
1

2

)n

. On en déduit

E(Sn) = 0×
(

1

2

)n

+ n×
[
1−

(
1

2

)n]
= n×

[
1−

(
1

2

)n]

On en déduit que E(Xk) = 1−
(

1

2

)n

.

2. Le gain moyen augmente avec le nombre de joueurs, donc le joueur à intérêt d’accepter un nouveau
joueur.

Par contre, le gain moyen du serveur est
n

2n
et x 7→ x

2x
est décroissante pour x ≥ 2. Donc le serveur

a intérêt à refuser le nouvel arrivant.

3. Soit f : I → R une fonction convexe.

(a) Une récurrence avec utilisation du barycentre partiel donne le résultat (c’est du cours).

(b) Une application directe du théorème de transfert permet de conclure.

4. Si Gk est l’évènement le joueur k gagne et Y le nombre de gagnants différents de k, on a

P(Xk = n/r) = P(Y = r − 1 ∩Gk)
indépendants

= P(Y = r − 1)P(Gk) =
1

2
×
(
n− 1

r − 1

)(
1

2

)n−1

, car

Y suit une loi binomiale de paramêtre n− 1 et 1/2.

E(X2
k) =

n∑
r=1

n2

r2

(
n− 1

r − 1

)(
1

2

)n

=
n2

2

n−1∑
r=0

1

(1 + r)2

(
n− 1

r

)(
1

2

)n−1

La fonction g : x 7→ 1

(1 + x)2
est convexe et soit U une loi binomiale de paramêtres n− 1 et

1

2
. La

question précédente donne

E(X2
k) =

n2

2

n−1∑
r=0

1

(1 + r)2

(
n− 1

r

)(
1

2

)n−1

=
n2

2
× E(g(U)) ≥ n2

2
× g(E(U))

=
n2

2
× 1(

(n− 1)× 1
2 + 1

)2 =
2n2

(n + 1)2
.
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