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Exercice 1. On définit la suite (un)n∈N par :

u0 = 0, u1 = 1 et ∀n ≥ 2, un+2 = un+1 + un.

Déterminer le rayon de convergence R de la série entière
∑

unx
n et montrer que, pour tout x ∈]−R,+R[,

∞∑
n=0

unx
n =

x

1− x− x2
.

Soit R le rayon de convergence de la série entière
∑

unxn. Pour tout x ∈]−R,+R[,

(1− x− x2)g(x) =

∞∑
n=0

unx
n −

∞∑
n=0

unx
n+1 −

∞∑
n=0

unx
n+2

=

∞∑
n=0

unx
n −

∞∑
n=1

un−1x
n −

∞∑
n=2

un−2x
n

= u0 + u1x− u0x+

∞∑
n=2

(un − un−1 − un−2)x
n

= x+

∞∑
n=2

(un − un−1 − un−2)x
n

= x

Les racines du polynôme caractéristique P (X) = X2 −X − 1 associé à la suite (un) sont − 1+
√
5

2
et − 1−

√
5

2
. D’où

∃(K,L) ∈ R2, ∀n ∈ N, un = K

(√
5 + 1

2

)n

+ L

(
1−

√
5

2

)n

.

Les constantes K et L sont déterminées par les deux C.I. u0 = 0 et u1 = 1. Donc

∀n ∈ N, un =
1
√
5

((√
5 + 1

2

)n

−
(
1−

√
5

2

)n)
.

Or
∣∣∣√5+1

2

∣∣∣ > 1 et
∣∣∣ 1−√

5
2

∣∣∣ < 1, d’où un ∼ 1√
5

(√
5+1
2

)n
. Par suite, R est égal au rayon de convergence de la série géométrique∑(√

5+1
2

x
)n

, donc R =
2

√
5 + 1

=

√
5− 1

2
.

Exercice 2 (produit de Cauchy & théorème radial d’Abel). 1. Rappeler le théorème du produit de Cauchy
de deux séries numériques absolument convergentes. Et celui du produit de Cauchy de deux séries
entières.

2. Quel est le terme général du produit de Cauchy des séries numériques
∑

un et
∑

vn, où un = vn = (−1)n

n1/4 ,
pour tout n ⩾ 1, et u0 = v0 = 0 ? En déduire que le produit de Cauchy de deux séries convergentes n’est
pas toujours une série convergente.



3. Soient
∑

un et
∑

vn deux séries numériques et, pour tout entier naturel n, wn =
n∑

k=0

ukvn−k.

On suppose que les trois séries
∑

un,
∑

vn et
∑

wn convergent. Montrer, à l’aide du théorème radial
d’Abel, que :

+∞∑
n=0

wn =

+∞∑
n=0

un ×
+∞∑
n=0

vn

1. Voir le cours.

2. Le terme général du produit de Cauchy est wn =
n∑

k=0

ukvn−k = (−1)n
n−1∑
k=1

1(
k(n− k)

)1/4 .
Or k(n− k) ≤

n2

4
(par étude des variations de x 7→ x(n− x) ou bien en remarquant que (n− 2k)2 ≥ 0), et par conséquent

|wn| ≥
√
2(n− 1)
√
n

, ce qui montre que la série de terme général wn diverge grossièrement.

Donc le produit de Cauchy de deux séries convergentes n’est pas toujours convergent.

3. Puisque
∑

un et
∑

vn convergent, les séries entières
∑

un xn et
∑

vn xn ont un rayon de convergence au moins égal à
1. D’après le cours, le produit de Cauchy a un rayon de convergence supérieur ou égal au minimum des deux rayons, donc
le rayon de convergence de la série entière

∑
wn xnest lui aussi au moins égal à 1. Si l’on note U(x), V (x), W (x), les

sommes respectives, on a U(x)V (x) = W (x), pour tout x ∈ ]− 1, 1].

Si x tend vers 1 par valeurs inférieures, alors U(x) tend vers

+∞∑
n=0

un, V (x) tend vers

+∞∑
n=0

vn et W (x) tend vers

+∞∑
n=0

wn :

c’est vrai par continuité des sommes U , V et W si les rayons sont strictement supérieurs à 1 ; et c’est encore vrai si un
rayon vaut 1 d’après le théorème radial d’Abel car les séries

∑
un,

∑
vn et

∑
wn convergent.

Par unicité de la limite, le produit des deux premières sommes est égale à la troisième, c’est-à-dire

+∞∑
n=0

wn =

+∞∑
n=0

un×
+∞∑
n=0

vn.

Exercice 3. 1. Montrer que la série
∑ (−1)n

na + (−1)n
converge si, et seulement si, a > 1

2 .

2. Pour quelles valeurs du réel x la série
∑ xn

na + (−1)n
est-elle convergente ? (On discutera suivant les

valeurs du paramètre a.)

1. Si a = 0, alors la suite (un) n’est pas bien définie. Supposons donc a ̸= 0. Soit, pour tout n ≥ 2, un =
(−1)n

na + (−1)n
:

— si a < 0, alors la suite un ne tend pas vers zéro, donc la série
∑

un diverge.

— si a > 0, alors on calcule le D.L.

un =
(−1)n

na + (−1)n
=

(−1)n

na
·

1

1 +
(−1)n

na

=
(−1)n

na
−

1

n2a
(1 + εn).

Or la série
∑ (−1)n

na
converge d’après la TSA car la suite 1

na tend vers zéro en décroissant. Et les séries
∑ 1

n2a
(1+εn)

et
∑ 1

n2a
sont de même nature car les suites

1

n2a
(qui ne change pas de signe) et

1

n2a
(1 + εn) sont équivalentes,

donc convergent si, et seulement si, 2a > 1.

Donc la série
∑

un converge si, et seulement si, a > 1
2
.

2. Soit cn =
1

na + (−1)n
. La série

∑
cnxn est une série entière. On détermine son rayon de convergence R grâce au critère

de D’Alembert : pour tout n, |cnxn| > 0 et ∣∣∣∣ cn+1xn+1

cnxn

∣∣∣∣ −→
n→∞

|x|,

d’où la série
∑

|cnxn| converge si |x| < 1 et diverge si |x| > 1. Donc R = 1. Et aux bords ?

— en x = −1, la série
∑

cnxn converge si, et seulement si, a > 1
2
d’après l’étude précédente ;

— en x = +1, la suite cnxn = cn est positive et équivalente à
1

na
, d’où la série

∑
cn converge si, et seulement si, a > 1

d’après le critère de Riemann.


