
Colle 15 Espaces vectoriels normés

BOLLET Alexandre

Exercice 1. Soit r > 0 et Er l’ensemble des applications de ]−r, r[ dans R développables en série entière.

Pour f ∈ Er, on pose ψ(f)(x) =

∫ x

0

f(t)

x+ t
dt.

1. Montrer que ψ est un endomorphisme de Er.

2. Déterminer les valeurs propres et les vecteurs propores de ψ ; ψ est-il un automorphisme de Er ?

3. Pour un polynôme, on pose ‖P‖ = sup
t∈[−1,1]

|P (t)| ; ψ induit-elle une application continue sur R[t] ?

Son inverse est-elle continue ?
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Solution 1. 1. On a

ψ(f)(x) =

∫ 1

0

f(xu)

1 + u
du,

d’où si f =

+∞∑
n=0

any
n pour y ∈]− r, r[, on a donc pour x ∈]− r, r[ :

ψ(f)(x) =

∫ 1

0

+∞∑
n=0

(
anx

n un

1 + u

)
du =

+∞∑
n=0

anx
n

∫ 1

0

un

1 + u
du

vu que

∣∣∣∣anxn un

1 + u

∣∣∣∣ ≤ |anxn|. En posant In =

∫ 1

0

un

1 + u
du, il vient

ψ(f)(x) =

+∞∑
n=0

anInx
n.

2. On obtient ψ(f) = λf ssi ∀n ∈ N, anIn = λan. On en déduit que les valeurs propres sont {In, n ∈
N}, les vecteurs propres état proportionnels à xn, donc ψ est injective.

De plus, ψ est surjective : si g =

+∞∑
n=0

bnx
n, on pose an = bn

In
.

3. ψ est un automorphisme de R[t]. De plus, si x ∈ [−1, 1], |ψ(f)(x)| ≤ ‖f‖, donc ψ est continue. En

revanche, ψ−1 ne l’est pas. En effet, si fn(xn et ψ−1(fn)(x) =
xn

In
. On ‖fn‖ = 1, tandis que (In)

tend vers 0.
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VONCK Baptiste

Exercice 2. Soit E l’espace vectoriel des fonctions de classe C1 sur le segment [0, 1] et à valeurs réelles :
E = C1([0, 1],R).

1. Pour f ∈ E, on définit

p1(f) =

∣∣∣∣∫ 1

0

f(t)dt

∣∣∣∣+

∫ 1

0

|f ′(t)|dt

et p2(f) = |f(0)|+
∫ 1

0

|f ′(t)|dt

Montrer que p1 et p2 sont deux normes équivalentes sur E.

On pourra, entre autres, justifier qu’il existe c ∈ [0, 1] tel que
∫ 1

0
f(t)dt = f(c).

2. Soit φ une forme linéaire non nulle et positive sur E, ie telle que

∀f ∈ E, f ≥ 0⇒ φ(f) ≥ 0.

Montrer que si f ∈ E, on a |φ(f)| ≤ ‖f‖∞ × φ(1).

3. On pose pφ(f) = |φ(f)|+
∫ 1

0

|f ′(t)|dt.

Montrer que φ(1) > 0 (où 1 désigne la fonction constante égale à 1) et en déduire que pφ est une
norme sur E.

4. Montrer que pφ est équivalente à p1 et p2.

5. Soit (fn)n∈N une suite de fonctions de E telle que la suite (f ′n)n∈N converge uniformément sur [0, 1].

De plus, on suppose que un =

+∞∑
p=1

2−pfn

(
1

p

)
est convergente.

(a) Montrer que la suite (fn(0))n∈N converge.

(b) En déduire que la suite (fn)n∈N converge uniformément sur [0, 1].

Solution 2. 1. Montrons que p1 et p2 sont des normes équivalentes. Les axiomes de normes
(séparation, homogénéité, inégalité triangulaire) se vérifient aisément pour p1 et p2. Concentrons-
nous sur l’équivalence.

D’après le théorème de la moyenne, pour tout f ∈ E, il existe c ∈ [0, 1] tel que

∫ 1

0

f(t)dt = f(c).

On a f(c) = f(0) +

∫ c

0

f ′(t)dt, donc :

|f(c)| ≤ |f(0)|+
∫ 1

0

|f ′(t)|dt = p2(f)

D’où p1(f) = |f(c)|+
∫ 1

0

|f ′| ≤ p2(f) +

∫ 1

0

|f ′| ≤ 2p2(f).

Inversement, on a f(0) = f(c)−
∫ c

0

f ′(t)dt. Donc :

|f(0)| ≤ |f(c)|+
∫ 1

0

|f ′| =
∣∣∣∣∫ 1

0

f

∣∣∣∣+

∫ 1

0

|f ′| = p1(f)
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Par suite, p2(f) = |f(0)|+
∫ 1

0

|f ′| ≤ p1(f) +

∫ 1

0

|f ′| ≤ 2p1(f).

On a bien l’équivalence : 1
2p1 ≤ p2 ≤ 2p1.

2. Majoration de φ(f). Soit f ∈ E. On a l’encadrement −‖f‖∞ · 1 ≤ f ≤ ‖f‖∞ · 1. Par positivité
de la forme linéaire φ, on conserve l’ordre :

−‖f‖∞φ(1) ≤ φ(f) ≤ ‖f‖∞φ(1)

Ce qui donne bien |φ(f)| ≤ ‖f‖∞ × φ(1).

3. pφ est une norme. Comme φ est non nulle, il existe g ∈ E tel que φ(g) 6= 0. D’après l’inégalité
précédente, |φ(g)| ≤ ‖g‖∞φ(1), ce qui impose φ(1) 6= 0. Comme φ est positive et 1 ≥ 0, on a
φ(1) ≥ 0, donc finalement φ(1) > 0.

Vérifions l’axiome de séparation (les autres sont immédiats). Soit f ∈ E telle que pφ(f) = 0. Alors∫ 1

0

|f ′| = 0, donc f ′ = 0 (fonction continue positive d’intégrale nulle), ce qui implique que f est

constante, disons f = a. On a aussi |φ(f)| = 0, soit φ(a · 1) = aφ(1) = 0. Comme φ(1) 6= 0, on a
a = 0, donc f = 0.

4. Équivalence de pφ avec p2 (et donc p1).

Sens 1 : Pour tout x ∈ [0, 1], f(x) = f(0) +
∫ x
0
f ′, donc |f(x)| ≤ |f(0)| +

∫ 1

0
|f ′| = p2(f). Ainsi

‖f‖∞ ≤ p2(f). En utilisant la question 2 : |φ(f)| ≤ φ(1)‖f‖∞ ≤ φ(1)p2(f). Donc pφ(f) = |φ(f)|+∫
|f ′| ≤ (φ(1) + 1)p2(f).

Sens 2 :

— Si f s’annule en un point c ∈ [0, 1], alors f(0) = −
∫ c
0
f ′, d’où |f(0)| ≤

∫ 1

0
|f ′| ≤ pφ(f). On a

alors p2(f) ≤ 2pφ(f).

— Si f ne s’annule pas, par continuité, elle garde un signe constant. Quitte à considérer −f ,
supposons f > 0. f atteint son minimum en un point a ∈ [0, 1] : pour tout t, f(t) ≥ f(a) > 0.

Par croissance de φ : φ(f) ≥ φ(f(a)) = f(a)φ(1). Donc 0 < f(a) ≤ φ(f)
φ(1) = |φ(f)|

φ(1) . Or

|f(0)| ≤ |f(a)|+
∣∣∣∫ 0

a
f ′
∣∣∣ ≤ pφ(f)

φ(1) +
∫ 1

0
|f ′|. Ainsi :

p2(f) ≤ pφ(f)

φ(1)
+ 2

∫ 1

0

|f ′| ≤
(

2 +
1

φ(1)

)
pφ(f)

Dans tous les cas, on a bien l’équivalence.

5. (a) Posons ψ : f 7→
∞∑
p=1

2−pf(1/p). C’est une forme linéaire bien définie (car f bornée) et positive.

De plus ψ(1) = 1 > 0. D’après les questions précédentes, pψ est une norme équivalente à p2.

L’hypothèse que (f ′n) converge uniformément implique que
∫ 1

0
|f ′n − f ′m|

n,m→∞−−−−−→ 0.

L’hypothèse que (un) converge implique que |ψ(fn − fm)| n,m→∞−−−−−→ 0.
Par équivalence : Or p2(fn − fm) = |fn(0)− fm(0)|+

∫
|f ′n − f ′m|. On en déduit que |fn(0)−

fm(0)| → 0. On fixe m ; la suite réelle (fn(0)) est bornée, donc admet une sous-suite conver-
gente vers l. Mais alors |fm(o)− l| tend vers 0, donc fm(0) converge..

(b) La suite (f ′n) converge uniformément vers une fonction g. La suite (fn(0)) converge vers un
réel y0. D’après le théorème fondamental de l’analyse (ou théorème de dérivation limite), la
suite (fn) converge uniformément sur [0, 1] vers la fonction f définie par f(x) = y0+

∫ x
0
g(t)dt.

6. Question subsidiaire. Pour sup p1
p2

, on a vu la majoration par 2. On l’atteint asymptotiquement avec

fn(t) = 1 − (1 − t)n (fonction qui vaut 0 en 0 mais dont l’aire tend vers 1 et l’intégrale de la
dérivée vaut 1). Pour sup p2

p1
, majoration par 2. On l’atteint asymptotiquement avec fn(t) = (1− t)n

(fonction qui vaut 1 en 0, aire tend vers 0, intégrale dérivée vaut 1). Dans les deux cas, le sup est
2.
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LE QUERE Léandre

Exercice 3. Soit E = C1([0, 1),R).

1. Montrer que sur E, les applications N1 : f → |f(0)|+ sup
[0,1]

|f + 2f ′| et N2 : f → sup
[0,1]

|f |+ sup
[0,1]

|f ′| sont

deux normes équivalentes.

2. Sont-elles équivalentes à la norme de la convergence uniforme ?
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Solution 3. Il est clair que ce sont des normes et que N1 6 2N2

1. Montrons l’autre inégalité.

Posons g = f + 2f ′. Donc
(
2f et/2

)′
= g(t) et/2, ou encore

f(t) =
1

2
× e−t/2 ×

∫ t

0

g(x)ex/2 dx+ f(0)

On en déduit que

sup
[0,1]

|f | ≤ sup
[0,1]

|g| × sup
[0,1]

[
e−t/2 ×

∫ t

0

1

2
ex/2 dx

]
+ |f(0)| ≤ N1(f).

Par ailleurs, f ′ =
1

2
(g − f), donc

sup
[0,1]

|f ′| ≤ 1

2

(
sup
[0,1]

|g|+ sup
[0,1]

|f |

)
≤ N1(f)

Ainsi N2(f) 6 2N1(f) et les deux normes sot équivalentes.

2. Elles ne sont pas équivalentes à N∞ car, si on prend fn : x→ exp(nx), alors N2(fn) = (n+1)exp(n)
alors que N∞(fn) = exp(n). Donc, lim+∞(N2(fn)/N∞(fn)) = +∞.
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