LycktE CLEMENCEAU — NANTES 2025-2026 — MPI/MPT*

CORRIGE DE LA COLLE N° 14

Séries entieres & variables aléatoires

Exercice 1. Soit, pour tous n € N et z € R, f,(z) = e~ " cos(n’z).

o0
1. Montrer que la fonction f = Z fn est C* et que

n=0

FER () = (=1)F Z n*fe " cos(n?z) et fCRFD(2) = (—1)FF! Z n**+2e=" sin(n’z)
n=0 n=0
pour tous k € N et z € R > corollaire 19 du chapitre VII.

(k)
! k!(o) z" de la fonction f est nul.

2. En déduire que le rayon de convergence de la série de Taylor >

Voir le corrigé manuscrit ci-dessous

Exercice 2 (tiré de MINES PONTS MATHS 2 PC 2017).

Une urne contient n boules numérotées de 1 a n. On effectue n + 1 tirages avec remise. On note X la
variable aléatoire égale au nombre de tirages nécessaires pour amener, pour la premiere fois, une boule déja
tirée. Par exemple, avec n = 5, si les 6 tirages donnent successivement 3-2-1-5-2-3, alors X = 5. Pour modéliser
cette expérience aléatoire, on introduit I'univers Q = [1,n]" 1.

1. Soit k € [2,n + 1] : montrer que I"événement (X = k) n’est pas vide et que sa probabilité P(X = k)

n’est pas nulle.

2. Montrer que, pour tout k € [1,n — 1], P(X > k) #0 et :

P(X>k+1)=P(X >k+1|X >k)-P(X > k).

3. Pour chaque k € [1,n — 1], déterminer P(X > k+ 1|X > k).
4. En déduire P(X > k) pour tout k € [1,n].

1. Il y a équiprobabilité, d’ott P(X = k) = %@. Or I’événement (X = k) n’est pas vide car le résultat (1,2,--- ,k —
1,1,---,1) appartient & cet événement, d’ott Card(X = k) # 0, donc P(X = k) # 0.

2. L’événement (X = n + 1) est inclus dans (X > k), d’ol (par croissance de la proba) P(X > k) > P(X =n + 1) qui est
strictement positif d’apres la premiére question.

Les événements (X > k+1) et (X > k)N (X > k+ 1) sont égaux, dot P(X >k+1)=P[(X >k)N(X >k+1)] =
P(X > k) -P(X > k+1|X > k) d’apres la formule des probabilités composées.

3. Calculons P x>y (X >k +1). On sait que (X > k), donc on a tiré k boules distinctes deux a deux lors des k premiers
tirages. L’événement (X > k + 1) est réalisé si, et seulement si, on tire une (k + 1)-iéme boule différente des k premiéres.
Par équiprobabilité, P xsp) (X > k+1) = ";k

4 PSR = PO DX [T o 0 (X > 1) =0, don P(X > 1) = LB [ = —L T e L (2= D)

. P(X>k)=P(X > )XUT. r(X>1)=Q,dou P(X >1)=1. tU - 7?_71_[ = T )
=1 i=1 i=n—1
n!

nk(n — k)

Donc P(X > k) =

Exercice 3. Ils sont n joueurs (n > 2) & jouer une partie & pile ou face en jetant chacun une piece. L’'un d’entre
eux gagne la partie si sa piece donne un résultat différent des n — 1 autres. On joue jusqu’a ce qu’apparaisse
le premier gagnant ; soit X le nombre de parties alors jouées. Calculer, pour chaque k € N*, la probabilité
P(X = k). Etudier I'espérance et la variance de X.

Voir le corrigé manuscrit.
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