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E n d o m o r p h i s m e s r e m a r q u a b l e s d ’ u n e s p a c e e u c l i d i e n

Exercice 1. Soient un espace euclidien E et une application f de E vers E. On dit que f :

— conserve la distance si ∀(u, v) ∈ E2, ∥f(u)− f(v)∥ = ∥u− v∥ ;
— conserve le produit scalaire si ∀(u, v) ∈ E2, ⟨f(u)|f(v)⟩ = ⟨u|v⟩.

1. Montrer que f conserve le produit scalaire si, et seulement si, f(0E) = 0E et f conserve la distance.

2. Donner un exemple d’application f qui conserve la distance mais telle que f(0E) ̸= 0E .

Exercice 2. Soit u une isométrie vectorielle d’un espace euclidien E.

1. Montrer que toute valeur propre réelle de u appartient à {−1;+1}.
2. Montrer que les sous-espaces vectoriels Ker(u− idE) et Ker(u+ idE) sont orthogonaux.

3. Soient F et G deux sev de E. Montrer que : si F ⊥ G, alors u(F ) ⊥ u(G).

4. Soit F un sev de E. Montrer que u(F⊥) = (u(F ))
⊥
.

Exercice 3. Soit u un endomorphisme d’un espace euclidien E. Montrer que :

Ker(u∗) = (Imu)⊥ et Im(u∗) = (Keru)⊥.

Exercice 4. Diagonaliser, si possible, la matrice

A =


0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0


dans une base orthonormée. (Revoir les deux méthodes de � l’exo 2 de la colle no 7 et tenter une troisième
méthode utilisant le théorème spectral.)

Exercice 5.

1. Soit u un endomorphisme autoadjoint d’un espace euclidien E. Soient λmin la plus petite valeur propre
de u et λmax la plus grande. Montrer que :

∀x ∈ E, λmin⟨x|x⟩ ≤ ⟨x|u(x)⟩ ≤ λmax⟨x|x⟩.

2. Soit une matrice symétrique S = (sij) ∈ Sn(R). Soient λmin la plus petite valeur propre de S et λmax

la plus grande. Montrer que : ∀i ∈ J1, nK, λmin ≤ sii ≤ λmax.

3. Soient deux matrices A et B de Mn(R). Soient α et β les plus grandes valeurs propres de AT ·A et de
BT ·B respectivement. Montrer que :

∀λ ∈ Sp(AB), λ2 ≤ α · β.



Exercice 6. � exo 3 du TD no 12. Soit E un espace euclidien, u un vecteur de E tel que ||u|| = 1.
Pour chaque réel α, on définit l’endomorphisme φα par :

∀x ∈ E, φα(x) = x+ α⟨x, u⟩u.

1. Montrer que φα est un endomorphisme autoadjoint de E.

2. Montrer que l’endomorphisme φα est une isométrie vectorielle si, et seulement si, α = 0 ou α = −2.
Reconnâıtre l’endomorphisme φα dans ces deux cas.

Exercice 7 (Matrices symétriques positives). Soient n et p deux entiers naturels non nuls.

1. Soit B ∈ Mpn(R). Montrer que la matrice BTB est une matrice symétrique positive, i.e. BTB ∈ S+
n (R).

2. Soit A une matrice symétrique, i.e. A ∈ Sn(R). Montrer que A est définie positive si, et seulement si,
elle est positive et inversible.

3. Soit A ∈ S+
n (R). Montrer qu’il existe une matrice B ∈ S+

n (R) telle que A = B2. Et que cette matrice B
est unique. On l’appelle la racine carrée de A.

Exercice 8. Soient E un espace euclidien, λ un réel et f une isométrie vectorielle de E telle que (f − λidE)
2
= 0.

1. Montrer que (Ker(f − λidE))
⊥

est stable par f .

2. En déduire que (Ker(f − λidE))
⊥
= {0E}.

3. Conclure que f = ±idE .

Exercice 9. Écrire la matrice, dans la base orthonormée directe (⃗ı, ȷ⃗, k⃗) de R3, de la rotation d’angle π
6 autour

de l’axe dirigé et orienté par ı⃗+ ȷ⃗.

Exercice 10 (tiré de CCINP 2019 TSI Math 2).

On munit l’espace vectoriel E = S2(R) des matrices 2×2 symétriques du produit scalaire ⟨A,B⟩ = tr(ATB).

1. Un cas particulier —

Montrer que l’application f qui, à toute matrice M =

(
a b
b c

)
, associe la matrice

f(M) =

(
a+c
2 − b a−c

2
a−c
2

a+c
2 + b

)
est une rotation de E qui conserve la trace et le déterminant : f ∈ SO(E) et ∀M ∈ E, tr f(M) = trM
et det f(M) = detM.

Déterminer les sous-espaces propres de f .

2. Le cas général —

Soit f une isométrie de E laissant invariante la matrice identité : f ∈ O(E) et f(I2) = I2. Montrer que
f conserve la trace et le déterminant.



Exercice 11 (Endomorphismes normaux). Soit u un endomorphisme d’un espace euclidien E tel que

u ◦ u∗ = u∗ ◦ u.

(On dit d’un tel endomorphisme qu’il est normal.)

1. Montrer que, pour tout (x, y) ∈ E2, ⟨u(x), u(y)⟩ = ⟨u∗(x), u∗(y)⟩.
2. En déduire que u et u∗ ont les mêmes spectre et sous-espaces propres.

3. Montrer que, si un sev F est stable par u, alors son orthogonal F⊥ est aussi stable par u.

4. On suppose que dimE = 2. Montrer que u est un endomorphisme autoadjoint ou la composée d’une
homothétie et d’une rotation.

Exercice 12 (Le produit vectoriel). Soit B = (⃗ı, ȷ⃗, k⃗) une base orthonormée directe d’un espace euclidien orienté
E de dimension 3.

1. Soient deux vecteurs v⃗ = v1⃗ı + v2ȷ⃗ + v3k⃗ ∈ E et w⃗ = w1⃗ı + w2ȷ⃗ + w3k⃗ ∈ E. Montrer qu’il existe un
unique vecteur a⃗ ∈ E tel que : ∀u⃗ ∈ E, detB(u⃗, v⃗, w⃗) = u⃗ · a⃗.

Ce vecteur est noté v⃗ ∧ w⃗ et est appellé le produit vectoriel des vecteurs v⃗ et w⃗.

2. Montrer que : v⃗ ∧ w⃗ = (v2w3 − v3w2)⃗ı+ (v3w1 − v1w3)ȷ⃗+ (v1w2 − v2w1)k⃗.

3. À quelle condition le produit vectoriel v⃗ ∧ w⃗ est-il nul ? Cette condition est-elle nécessaire ? suffisante ?

4. Montrer que, si v⃗ et w⃗ sont deux vecteurs non colinéaires, alors le vecteur v⃗ ∧ w⃗ est orthogonal au plan
Vect(v⃗, w⃗). Et que (v⃗, w⃗, v⃗ ∧ w⃗) est une base directe.

5. Montrer que :
(v⃗ ∧ w⃗) · (v⃗ ∧ w⃗) + (v⃗ · w⃗)2 = (v⃗ · v⃗) (w⃗ · w⃗) .

En déduire que la norme du vecteur v⃗ ∧ w⃗ est égale à l’aire du parallélogramme construit sur les vecteurs
v⃗ et w⃗, autrement dit :

∥v⃗ ∧ w⃗∥ = ∥v⃗∥ ∥w⃗∥ | sin(v⃗, w⃗)|.

Exercice 13. Soit A ∈ Mn(R) une matrice antisymétrique.

1. Soit λ une valeur propre complexe de la matrice A et X ∈ Cn un vecteur propre associé.

En calculant XT ·A ·X, montrer que λ est imaginaire pur, autrement dit : que SpC(A) ⊂ iR.
2. Montrer que les matrices In −A et In +A sont inversibles.

3. Vérifier que les matrices In −A et (In +A)−1 commutent.

4. Montrer que la matrice R = (In +A)−1(In −A) est orthogonale.

5. La matrice R appartient-elle à SOn(R) ?

Et aussi : les exercices 63,66,68,78 de la banque CCINP & l’exercice du DS no 6 MPI/* 2024-2025.


