LycEE CLEMENCEAU — NANTES MATHEMATIQUES — MPI/MPT*

CORRIGE DE LA FEUILLE DE T.D. N° 12

Endomorphismes remarquables d’un espace euclidien

1er février 2026

Exercice 1. Soient un espace euclidien E et une application f de FE vers E. On dit que f :

conserve la distance si  V(u,v) € E?, | f(u) — f(v)|| = ||u—v||;
conserve le produit scalaire si ~ V(u,v) € E?,  (f(u)|f(v)) = (u|v).

Montrer que f conserve le produit scalaire si, et seulement si, f(0g) = 0g et f conserve la distance.

. Donner un exemple d’application f qui conserve la distance mais telle que f(0g) # Og.

Si f(0g) =0g et f conserve la distance, alors :

(fF)lf(0)) (If @I + [[f()II* = [[f(w) = f(v)II?)  (identité de polarisation)

(I1f (@) = FOR)IP +11f(v) = FOR)I? = [If(u) = F(@)]?) car f(0p)=0p
(lu = 0gl? + [lv = 0g||? — |lu — v||?) car f conserve la distance

(lull® + [lv]* = [lu = ]|*)

(ulv) (identité de polarisation).
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Réciproquement, si f conserve le produit scalaire, alors : || f(0g)||? = (f(0g)|f(0g)) = (0g|0g) =0, d’ot f(0g) =0g. Et
I1f(w) = f(v)II? F@)f(w) + (f)If () = 2(f ()] f(v))

(ulu) + (v|v) — 2(ulv) car f conserve le produit scalaire
flu — vl

Soient a un vecteur non nul de E et f la translation de vecteur a, définie par : Vx € E, f(x) = x + a. Dune part
£(05) = a # 0p. D'autre part || f(u) — F(v)] = lu— vl| car f(u) — f(v) = (u+a) — (v +a) = u—w.

Exercice 2. Soit u une isométrie vectorielle d’un espace euclidien F.

1.

2
3.
4

Montrer que toute valeur propre réelle de u appartient & {—1;+1}.

. Montrer que les sous-espaces vectoriels Ker(u — idg) et Ker(u + idg) sont orthogonaux.

Soient F' et G deux sev de E. Montrer que : si F' L G, alors u(F) L u(G).

. Soit F un sev de E. Montrer que u(FL*) = (u(F))".

Si A € R est une valeur propre de u, alors il existe un vecteur non nul € E tel que u(z) = Az. D’ou |[u(z)|| = |A|||z]]. Or
u conserve la norme, d’ou ||u(z)|| = ||z||. Par suite ||z|| = |A| ||z||. En outre,  # 0, d’ou ||z|| # 0, donc |A| = 1.
Siz e SEP(+1) et y € SEP(—1), alors u(z) = z et u(y) = —y, d’ou (u(z)|u(y)) = (x| — y) = —(z|y). Mais u conserve le

produit scalaire, d’olt (u(x)|u(y)) = (z|y). On en déduit que (z|y) = 0. Donc SEP(+1) L SEP(-1).
Commengons par remarquer que u(F') et u(G) sont bien des sev car ce sont les images de sev par une application linéaire.
Soient z € u(F) et y € u(G) : on veut montrer que = L y.
1l existe zg € F et yo € G tels que z = u(zo) et y = u(yo) :
(ly) = (uw(zo)lu(yo))
(zolyo) car u est une isométrie
0car zg L yocar F L G.

Donc u(F) L u(G).



4. F L FL dou (grace a la question précédente) : u(FL) L u(F), ce qui équivaut a : u(FL) C (u(F))*.

1l reste & montrer autre inclusion et c’est une affaire de dimensions : d’une part, u est bijective, d’ott dim u(F1) = dim F+
et dimu(F) = dim F. D’autre part, E est de dimension finie, d’ott dim (u(F))* = dim E — dim u(F) (car u(F) et u(F)+
sont supplémentaires) et dim F- = dim E — dim F' (car F et F* sont supplémentaires).

Dot u(F+) C (w(F))" et ces deux sev ont méme dimension, donc il sont égaux.

Exercice 3. Soit u un endomorphisme d’un espace euclidien E. Montrer que :

Ker(u*) = Imu)* et Im(u*) = (Keru)t.

e On va prouver la propriété Q : Ker(u*) = (Imu)* par double inclusion.
Montrons que Ker(u*) C (Imu)~t : soient z € Ker(u*) et y € Imu. Il existe z € E tel que y = u(z), d’otr
(Zy) = (z,u(2))
(u*(z),z) par définiton de u*
= 0 carz € Ker(u").

Montrons que (Imu)+ C Ker(u*) : soit y € (Imu)*. Alors Vz € E, (y,u(x)) = 0. Or {(y,u(z)) = (u*(y), z) par définition de
u*. D’ou : Vz € E, (u*(y),z) = 0. En particulier, (u*(y),u*(y)) = 0. Donc v*(y) = 0g.

e On veut prouver que Im(u*) = (Keru)® . Or ces sev sont de dimension finie (donc égaux & 'orthogonal de leur orthogonal).La

propriété est donc équivalente & Im(u* 1 = Kerw. 1l suffit de remplacer u par v* dans la propriété O car (u*)* = .

Exercice 4. Diagonaliser, si possible, la matrice
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dans une base orthonormée. (Revoir les deux méthodes de > 1’exo 2 de la colle n° 7 et tenter une troisieme
méthode utilisant le théoréme spectral.)

On remarque que le rang de la matrice A vaut 2 et que les deux vecteurs e; = (1, —1,0,0) et e2 = (1,0, —1,0) sont libres et
dans le noyau, donc forment une base de SEP(0). Ils ne sont pas orthogonaux, on y remédie :

eh=ex—ae; Ley <= (ex—aeile1)=0
<~ (eale1) —afeiler) =0
<— l1l—ax2=0
= a=1/2
<~

8/2 = (1/271/27 _170)

)

[oW

Les autres sous-espaces propres sont orthogonaux a SEP(0)
du systéme :

apres le théoréme spectral, donc leurs vecteurs (z, vy, 2, t) vérifient

0

z +0 -z +40 0

{x -y 40 40

et sont donc de la forme (z,z, z,t).

ANALYSE — L’image d’un tel vecteur par A est :

+ 8 8 8

S’il est propre et associé & une valeur propre A, alors t = Az et 3z = A, d’ott 3z = A2z. Et = # 0, d’out A = £+/3.



SYNTHESE — Les vecteurs propres e3 = (1,1, 1, \/g) et eq = (1,1,1, 7\/5) sont propres et associés respectivement aux valeurs
propres +v/3 et —v/3. Ces valeurs propres sont distinctes, ces vecteurs propres sont donc orthogonaux. Une base orthogonale
formée de vecteurs propres est donc :

(e1,ez,e3,e4) = ((1,—1,0,0),(1/2,1/2,—1,0), (1,1,1,+/3), (1,1, 1, —/3)).

Une fois normés ces vecteurs, on obtient une b.o.n. formée de vecteurs propres :

1 V2 1 1
e1,e2,e3,e4) = | —(1,-1,0,0), ~—=(1/2,1/2,—1,0), —(1,1,1,v3), —(1,1,1,—V3) | .
(e1,e2,e3,e4) <\/§( )\/3(/ / )\/g( )\/6( )>
Matriciellement : la matrice de passage
1 2 1 1
V2 23 V6 VB 0 0 0 0
S B T_ plg pot 00 0 0
— 2 23 6 6 — - - _
P = 5 g0 e est telle que P* = P~ " et PT AP = 0 0 V3 0
I 00 0 -v3
V2 —V2

Exercice 5.

1. Soit u un endomorphisme autoadjoint d’un espace euclidien F. Soient \,,;, la plus petite valeur propre
de u et Ao la plus grande. Montrer que :

Vo € B, Apin(z|z) < (z|u(x)) < Apas{z|T).

2. Soit une matrice symétrique S = (s;5) € Sp(R). Soient Ay, la plus petite valeur propre de S et Apqz la
plus grande. Montrer que :
Vi € [[Ln]]a )\mzn S Sig S )\maz-

3. Soient deux matrices A et B de M,,(R). Soient a et 3 les plus grandes valeurs propres de AT - A et de
BT . B respectivement. Montrer que :

VYA €Sp(AB), M <a-B.

1. L’endomorphisme u est autoadjoint, d’out (théoréme spectral) il existe une base orthonormée (g1, - - ,&n) de E formée de vec-
teurs propres de u : Vi € [1,n], u(e;) = Ase;. Doy, pour tout z = 377 wie; € B, (zlu(x)) = (307, zie] 37— 2 e5) =

Zlgi,jgn z Az (eles) = Z1§i,j§n T w05 =300 )‘1%2

Donc Apinllz]|? = A )\minac? <Az|u(z)) <37, )\maxaclz = Amaz|lz||?.

2. On munit R™ du produit scalaire canonique. Lendomorphisme u : X +— S - X est symétrique car sa matrice, dans la base
canonique de R", est S. Or cette base est orthonormée et cette matrice est symétrique. On applique I’encadrement de la
question précédente : A\ppin XL - X < XT .5 X < AnazXT - X, pour tout vecteur colonne X. Choisissons pour vecteur X
le i—eme vecteur de la base canonique : X7 - X =1 et X7 .8 X = s55. Donc Apmin < Sii < Amaz-

3. On déduit de I’encadrement de la premiere question, appliqué & ’endomorphisme représenté par la matrice symétrique
AT . A, Pinégalité : XT . (AT - A)- X <aXT.-X Or XT . (AT . A). X = (AX)T . (AX) = ||AX|]2. D’ou [|AX]]? < | X||?
pour tout X. De méme, ||BX||? < 8|/ X||? pour tout X.

Si A est une valeur propre de AB, alors il existe un vecteur X non nul tel que (AB)X = AX. D’ou
Or (AB)X = A(BX), d'ot | (AB)X||? < o BX||? < af].X]|2.

[(AB)X||? = A% || X2

Dot A2 || X |2 < aB||X||?. Or le vecteur X n’est pas nul, donc : A2 < - 8.

Exercice 6. > exo 3 du TD n°12. Soit E un espace euclidien, v un vecteur de E tel que ||u|| = 1.
Pour chaque réel «, on définit I’endomorphisme ¢, par :

Vr € E, po(z) =z + alz, u)u.

1. Montrer que ¢, est un endomorphisme autoadjoint de E.



2.

Montrer que ’endomorphisme ¢, est une isométrie vectorielle si, et seulement si, « = 0 ou a = —2.
Reconnaitre I’endomorphisme ¢, dans ces deux cas.

. Soitz, y€ E.On a:

(pal@)ly) = (x4 alz,u)uly)
(z]y) + oz, u)(uly)

= (zfy) + (z, afuly)u)
(z,y + afylu)u)
(z, 0a(y))-

. Soient z et y deux vecteurs de E. Il existe un unique couple (x1,z2) € Vect(u) x Vect(u)- et un unique couple

(y1,y2) € Vect(u) x Vect(u)® tel que x = x1 + x2 et y = y1 + y2. On a donc

(zly) = (21 +z2ly1 +92)
(z1ly1) + (z2ly1) + (z1ly2) + (@2]y2)
= (z1]y1) + (z2ly2)

De méme on obtient I’égalité

(Pa(@)lea(y)) = (pal®1+z2)l0alyr +y2))
= ((1+a)z1 +z2|(1+a)y1 +y2)
= (1+a)(z1lyr) + (22]y2)
Donc ¢ est une isométrie si, et seulement si, pour tous z1 et y1 dans Vect(u),
(14 a)*(@1]y1) = (z1]y1).
Si (1 + a)? = 1, alors ¢, est une isométrie. Réciproquement : ¢, est une isométrie alors dans le cas particulier ot
1 =y1 =u, (1+ a)2 = 1. Donc ¢ est une isométrie si, et seulement si, « = 0 ou o = —2.

Si a =0, alors @, est I'identité. Si o = —2, alors o4 est la symétrie orthogonale par rapport & Vect(u)=.

Exercice 7 (Matrices symétriques positives). Soient n et p deux entiers naturels non nuls.

1.
2.

Soit B € My, (R). Montrer que la matrice BT B est une matrice symétrique positive, i.e. BT B € S;(R).
Soit A une matrice symétrique, i.e. A € S,,(R). Montrer que A est définie positive si, et seulement si,
elle est positive et inversible.

Soit A € S;F(R). Montrer qu'il existe une matrice B € S;"(R) telle que A = B2. Et que cette matrice B
est unique. On 'appelle la racine carrée de A.

. D’une part, la matrice BT B est carrée : B € Mpn(R), dott BT € Myp(R) et BTB € My, (R). D’autre part, elle

est symétrique car (BT - B)T = BT . (BT)T = BT . B. Enfin, elle est positive car : VX € M,1(R), XT(BTB)X =
(BX)T(BX) = |BX|]> > 0.

. Soit A e S (R) une matrice symétrique positive. On veut montrer qu’elle est définie positive si, et seulement si, elle est

inversible. Si A n’est pas inversible, alors il existe un vecteur colonne X non nul tel que AX = 0. D’ott X7 AX = 0, donc
la matrice A n’est pas définie positive. Réciproquement : si A est inversible, alors 0 n’appartient pas & Sp(A), d’ou toutes
les valeurs propres de A sont strictement positives, donc A est définie positive.

. Soit A € S;F (R). La matrice A est symétrique, d’ol1, d’apres le théoréme spectral, il existe une matrice orthogonale P

telle que la matrice D = PT AP est diagonale. La matrice A est positive, d’otl la matrice D s’écrit diag(A1,- -+, An) ol
les valeurs propres \; sont positives, ce qui permet de définir la matrice C' = diag(v/A1,--+ ,vAn). Alors A = PC?2PT =
PCPTPCPT = B2, ol la matrice B = PCPT est :

— symétrique car BT = PCTPT = B car CT = C;

— positives car ses valeurs propres /A1, -+ , VA sont positives.
Reste & prouver I'unicité (revoir aussi > Kdo du 10/11/2025) :

e PREMIERE REDACTION (SANS MATRICES) : soit a ’endomorphisme représenté, dans une bon d’un espace euclidien E, par
la matrice A. Si a = bo b, alors b commute avec a, d’ou les sep de a sont stables par b. Soient A une valeur propre de a,
Ey(a) le sep de a associé & la valeur propre X et by I’endomorphisme induit par b sur ce sep (by est bien défini car E)(a)
est stable par b).



D’une part, by obx = Aidg, (). Par suite toutes les valeurs propres de by ont pour carré A, donc sont égales ++v/X. De plus
b est, par hypothese, un endomorphisme autoadjoint positif. Par suite, toutes ses valeurs propres sont positives. Par suite,
toutes les valeurs propres de by sont égales a +VA

D’autre part, I’endomorphisme by est autoadjoint car ’endomorphisme b ’est. Par suite by est diagonalisable.

On en déduit que by = +\f)\idE>\(a) est déterminé de maniére unique pour chaque A € Sp(a). Et donc I’endomorphisme b
est unique.

e SECONDE REDACTION (AVEC MATRICES) : on sait déja que la matrice D = PT AP est diagonale. La matrice B commute
avec A = B2, donc les sep de A sont stables par B. Par suite la matrice C = PT BP est, non seulement symétrique comme
on le sait déja, mais aussi diagonale par blocs :

ol (Ml P 0 al (B0 0.
]| o Nolgy 0 e | o By 0
P w oo T
o . o .
dTI DN dTI : B,

Et, pour chaque 1, Bi2 = Ailg, car C? = D d’une part. D’autre part, le bloc B; appartient & S; (R) car la matrice C

appartient & S, (R). Le bloc B; est donc diagonalisable, ses valeurs propres sont positives et leur carré vaut A;. D’ou
B; = +v/Ailg;. Ceci détermine complétement la matrice C' et donc aussi la matrice B = PCPT, ce qui prouve quelle est
unique.

Exercice 8. Soient E un espace euclidien, A un réel et f une isométrie vectorielle de E telle que (f — Aid E)2 =0.
1. Montrer que (Ker(f — Aidg))™ est stable par f.
2. En déduire que (Ker(f — Aidg))" = {0g}.
3. Conclure que f = +idg.

1. Les endomorphismes f et ¢ = f — AMidg commutent, d’ou : le sev G = Ker(g) est stable par f > prop. 16 du chap. II.

L’endomorphisme f est une isométrie vectorielle, d’ol1 (stabilité de 'orthogonal t> proposition 18 du chapitre XIT) : G est
aussi stable pat f. Donc (Ker(f — Midg))™" est stable par f.
2. Notons G = Ker(f — Aidg). Soit € G. On veut montrer que ce vecteur z est nul :
— d’une part (f — Midg)(z) € G+ par stabilité de G+ (question précédente) ;
— d’autre part (f — Midg)(z) € G car (f — Midg)? = 0 (par hypothése).
Dot (f — Aidg)(z) € GNGL. Or GN Gt = {0g}, dott (f — Aidg)(z) = O, autrement dit : © € G. Or = € G+ depuis le
début. Donc x = 0. C’est ce qu’on voulait montrer.
3. Le sev G = Ker(f — Aidg) est de dimension finie, d’ou : (GJ-)J' =G, d’ott G = {0 }+ d’apres la question précédente.
Donc (Ker(f — Aidg) = E : pour tout z € E, f — MAidg(z))(z) = 0. Donc f = Xidg.
Pour tout vecteur non nul z € E, f(z) = Az. D’ou || f(z)|| = |A| ||z||. Or f conserve la norme car c’est une isométrie, d’ott
[|f(@)|| = ||z||. Par suite ||z|| = |A| ||z||. En outre,  # 0, d’ou ||z|| # 0, donc |A| = 1.

Exercice 9. Ecrire la matrice, dans la base orthonormée directe (7,7, k) de R3, de la rotation d’angle § autour
de laxe dirigé et orienté par 7+ 7.

On cherche la matrice A, dans la bond B = (7, 7, E), de la rotation f d’axe dirigé et orienté par i+ 5 et d’angle %.
it

Le vecteur (normé) @ 72] dirige et oriente I’axe de rotation. Un vecteur normal & ’axe de rotation (et normé) est @ = k.

—

on obtient une base orthonormée directe B’ = (@, ¥, w) adaptée & la rotation f. Dans cette nouvelle

En posant ¥ = WA 4 =

base, la matrice de f est :

V3 _1 0o X2 2
;1 2 2 R 2 2
0o 0 1 1 0 0



est la matrice de passage de la vieille base B & la nouvelle base B’. D’olt A = PA’P~1. Or la vieille et la nouvelle bases sont
orthonormées, d’oti les colonnes de la matrice P forment une bon, donc P~1 = PT et

A=P| 1 3 |PT = |g _¥2 2 1 V3 o PT
2 2 2 2 2 2
0o 0 1 1 0 0 0o 0 1
= |2 8 2|2 2 o
VR A - B
N vy
3,1 3 .1
= |-7f: T fs: —7
_¥2 V2 V3
4 4 2

REMARQUES (comment vérifier le résultat) :

— les colonnes de la matrice A forment une b.o.n.d. car les vecteurs f(u), f(v) et f(w) sont les images respectives par la
rotation f des vecteurs u,v et w qui formaient une b.o.n.d.;

1 1
— Daxe de la rotaton f est dirigé par w, dou A- [1] =[1];
0 0

— la trace de la matrice A est égale & celle de la matrice A, c’est-a-dire & 1 + 2 cos %.

Exercice 10 (tiré de CCINP 2019 TSI Math 2). On munit P’espace vectoriel E = S3(R) des matrices 2 x 2
symétriques du produit scalaire (A, B) = tr(AT B).

1. Un cas particulier — Montrer que 'application f qui, a toute matrice M = (a

b . .
b ) associe la matrice

a+tc b a—c

— 2 2
f(M) ( % a—20—c+b

et VM € E, tr f(M) = tr M et det f(M) = det M. Déterminer les sous-espaces propres de f.
2. Le cas général — Soit f une isométrie de E laissant invariante la matrice identité : f € O(F) et
f(I3) = I,. Montrer que f conserve la trace et le déterminant.

est une rotation de F qui conserve la trace et le déterminant : f € SO(FE)

1. L’application f : E — E est un endomorphisme car elle est linéaire et I’image de toute matrice symétrique 2 x 2 est
encore une matrice symétrique 2 x 2.

L’endomorphisme f est une rotation de E ssi sa matrice dans une b.o.n. de E est spéciale orthogonale > définition XII.28.

L’ev E = S2(R) est de dimension 3. Les trois matrices

N AN R

forment une base (I, J, K) de 'ev E des matrices 2 X 2 symétriques. Et cette base est orthonormée pour le produit scalaire
(A, B) = tr(ATB).

Parce que f(I) =1, f(J) = K et f(K) = —J, la matrice de ’endomorphisme f dans cette base (I, J, K) est
fa) fJ) f(K)

1 1 0 0
[f](I,J,K) =J 0 0 -1
K 0 1 0

Cette matrice est orthogonale car ses colonnes forment une base orthonormée. De plus, son déterminant vaut 1, elle
appartient donc & SO3(R). L’application f est donc une rotation de E.
De plus f conserve la trace car tr f(M) = “7“ — b+ GTH +b = a+ c = tr M. Et conserve le déterminant car
det f(M) = (%5 —b) (%5 +b) — (%5¢)% = ac — b2 = det M.
Soit x s Le polynéme caractéristique de f : pour tout = € R,

z—1 0 O
Xf(x) =det(zidg — f)=| 0 z 1 =(x—-1)(?+1).
0 T

D’ou Spr(f) ={1} et 1 <dimSEP(1) < 1. Or f(I) = I. Donc SEP(1) = Vect(I).



2.

L’endomorphisme f de la question prcédente est bien un cas particulier car c¢’est une rotation, donc une isométrie. Et
f(I2) = Iz, donc il laisse invariante la matrice identité.

Dans la cas général : si f est une isométrie, alors f conserve le produit scalaire. En particulier : © {

pour toute matrice M = (‘; I;)

D’une part (M,I2) =ax14+bx0+bx0+4+cx1=a+c=trM. Et f(I2) = I2 par hypothese, d’ou (f(M), f(I2)) =
(f(M), I2) = tr f(M). Donc I’application f conserve la trace.

D’autre part (M, M) = a? + b2 +b% 4+ % = a® +2b% 4+ 2. D’ott (M, M) — (M, I5)? = a®? +2b? +c? — (a +¢)? = 2b% — 2ac =
—2(ac — b?) = —2det M. De méme, (f(M), f(M)) — (f(M), I2)? = —2det f(M).

De Q et de f(I2) = I2, on déduit que —2det f(M) = —2det M. Donc f conserve le déterminant.

Exercice 11 (Endomorphismes normaux). Soit u un endomorphisme d’un espace euclidien E tel que u o u* =
u* ou. (On dit d’un tel endomorphisme qu’il est normal.)

1.

Montrer que, pour tout (z,y) € E2, (u(z),u(y)) = (u*(z), u*(y)).

2. En déduire que u et u* ont les mémes spectre et sous-espaces propres.
3.
4. On suppose que dim E = 2. Montrer que u est un endomorphisme autoadjoint ou la composée d’une

Montrer que, si un sev I est stable par u, alors son orthogonal F* est aussi stable par u.

homothétie et d’'une rotation.

Soit (x,y) € E? : (u(x),u(y)) = (u* o u(x),y) par définition de I’adjoint. Or u* o u = u o u* par hypothese. Donc
(u(z),u(y)) = (uou*(x),y) = (u*(x),u*(y)) par définition de I’adjoint.
Soit un vecteur € E et un scalaire A € R : ||u*(x) — Az||? = ||u*(z)]|2 — 2X(u* (z), z) + A2||z||%.

Or |lu*(z)||? = ||u(x)||? d’apres la premigre question et (u*(x),z) = (z,u(x)) par définition de 1’adjoint.

Dot |lu*(z) — Az||? = ||u(z) — Az||2. On en déduit que z est un vecteur propre de u* associé a la valeur propre X si, et
seulement si, c’est un vecteur propre de u associé a la méme valeur propre. L’endomorphisme u et son adjoint ont donc les
mémes €éléments propres.

On se place dans une base adaptée B obtenue en concaténant une bon de F' et une bon de F+. La base B est ainsi une bon
de E. Soit M = [u]p la matrice de u dans cette base.

D’une part, parce que le sev F' est stable par u, la matrice M est triangulaire par blocs : M = (13 g) .

. R AT
D’autre part, parce que la base B est orthonormée, [u*]z = MT, d’ol [u*]z = (BT C?T) .

A- AT+ B.-BT =4AT . A
B.-cT=AT.B
C-BT =BT .A
c.cT=BT.B+CT.C

L’endomorphisme u est normal, d’ott uou* = u* ou, donc M- MT = MT . M. Par suite :

De la premiere équation, on déduit que B- BT = AT . A — A - AT et, par suite, tr(B - BT) = tr(AT - A - A- AT). Or
tr(AT - A— A AT) = tr(AT - A) —tr(A - AT) = 0. Et tr(B - BT) = || B||?, en utilisant la norme usuelle d’une matrice
carrée. D’ott || B||2 = 0, donc B = 0.

A

La matrice M est donc diagonale par blocs : M = (0

g), ce qui implique que le sev FL est stable u.
On se place dans un bon de E. Dans cette base, ’endomorphisme u est représenté par une matrice A = (a C) et,

parce que la base est orthonormée, son adjoint u* est représenté par la matrice transposée AT = (Z d) :

uou* =u*oudon A- AT = AT . A d’ot b2 = ¢2 et ab+ cd = ac + bd.
Premier cas : b= c. Alors A = AT d’ott v = u* est autoadjoint.

Second cas : b= —c. Alors ab+ cd = ac+ bd, d’ott (b=c =0 ou a =d).



Dans le premier sous-cas, la matrice A est diagonale donc symétrique, d’ot u est auto-adjoint. Dans le second sous-cas, il

existe 6 € R tel que A = (Z _ab) =+Va? +b? (z?jg —C(s)lsn09) et A est donc le produit de Va2 + b2 I3, matrice d’une

cosf —sinf

homothétie et de | .
sin 0 cos

), matrice d’une rotation.

Exercice 12 (Le produit vectoriel). Soit B = (%, J, E) une base orthonormée directe d’un espace euclidien orienté
E de dimension 3.

—

1. Soient deux vecteurs ¥ = v17'+ voJ + U3E € F et W = wit'+ waj+ wglg € E. Montrer qu’il existe un
unique vecteur @ € F tel que : Vi € E, detg(d, v, W) = 4 - d.

Ce vecteur est noté U A et est appellé le produit vectoriel des vecteurs U et .

2. Montrer que : ¥ A W = (vaws — v3w2)V+ (vswy — v1ws)T+ (Viwg — vgwl)E.
3. A quelle condition le produit vectoriel 7 A @ est-il nul? Cette condition est-elle nécessaire ? suffisante ?
4. Montrer que, si ¥ et @ sont deux vecteurs non colinéaires, alors le vecteur ¢’ A i est orthogonal au plan
Vect (¥, w). Et que (U, W, ¥ A &) est une base directe.
5. Montrer que :
(TAD) - (FAD) + (T 0)* = (T 0) (@ - 7).
En déduire que la norme du vecteur ¥ A w est égale a 'aire du parallélogramme construit sur les vecteurs

¥ et W, autrement dit :
[ A ]| = (|5]| || ] | sin(¥, @)].

1. L’application ¢ : E — R, @ > detp(u,7,w) est une forme linéaire (car le déterminant est multilinéaire) et 'ev F
est de dimension finie. D’apres le théoreme de représentation de Riesz, il existe donc un unique vecteur @ tel que :
Vi € E, p(d) =14 -ad.

2. On développe le déterminant 3 X 3 en suivant la premiere colonne :

up U1 wi

uz2  v2 w2 | =uy-
u3z vy w3

v wi
vy w3

‘—I—ua'

v1 w1
vy way |’

La base B étant orthonormée, on reconnait le produit scalaire du vecteur @ de coordonnées (u1,u2,us) et d’un vecteur
U A W de coordonnées ( )

3. Si ¥ et @ sont liés, alors det (@, ¥, W) = 0 pour tout @ € E, d’ol : Vi € E, @-(UAW) = 0. En particulier, (CAW) - (TAW) = 0,
donc ¥ A @ = 0. Réciproquement, si la famille (7, ) n’est pas liée, alors on peut la compléter en une base (@, 7, @) dont le
déterminant detg (@, v, W) = @ - (U A W) n’est pas nul, donc ¥ AW # 0.

4. ¥ - (U A W) = det(¥,7,W) = 0, dout ¥ L (¥ A @). De méme pour @. De plus, par définition du produit vectoriel,
detg (v A W, ¥, W) = (T A W) - (A W) est strictement positif car ¥ A @ # 0 d’apres la question précédente.

V2 w2
vy w3

v wi
v3 w3

vl Wi

) ’ V2 wo

5. Grace & la formule de la question 2, on vérifie par le calcul que : (F A @) - (¥ A @) + (¥ - W)2 = (¥ - ¥) (@ - ). Par suite,
5 A wlf? = 1312 [1]1% — (17|15 cos? (7, @) = [|7]?]|]|? sin® (7, ).

Exercice 13. Soit A € M,,(R) une matrice antisymétrique.

1. Soit A une valeur propre complexe de la matrice A et X € C™ un vecteur propre associé.

En calculant X7 - A - X, montrer que \ est imaginaire pur, autrement dit : que Spc(A) C iR.
. Montrer que les matrices I,, — A et I,, + A sont inversibles.
. Vérifier que les matrices I,, — A et (I, + A)~! commutent.
. Montrer que la matrice R = (I,, + A)~*(I,, — A) est orthogonale.
. La matrice R appartient-elle & SO, (R)?

Tt = W N




1. D’une part, A est antisymétrique, d’ou :
XT A X=—-(AX)T . X =-0X)T.X = - \XTX).
D’autre part, les coefficients de A sont réels, d’ou :

XT.A.-X=XT. AX = XTAX = XXTX). Dot —A\(XTX) =XXTX).

Or XTX =17+ + 2nTn = |z1]2 4+ -+ - 4 |2n|? # 0 car X # 0. D’ott A = —\. Donc \ € iR.
2. La matrice I, — A est inversible si, et seulement si, Ker(I,, — A) = {0} <= 1 ¢ Sp(A). D’apres la question précedente,

Sp(A) C iR, donc I, — A est inversible. De méme I, + A est inversible.

Les matrices I, — A et I, + A commutent : (I, — A)(In + A) = (In + A)(In — A).

Multiplions & droite par (I, + A)~! : (I, — A) = (In + A)(In, — A) (I, + A)~L.

Puis multiplions & gauche par (I, + A)~! :
(In + A)~ Iy — A) = (I, — A)(In + A)~1L.

Donc les matrices I,, — A et (I, + A)~! commutent.
4. La matrice R est orthogonale car

R-RT = (In+A) " (In—A) (In— AT [(
= (In+A)71(In*A)'(In*A)T [
= (In+A) YIn—A)-(In+A)
= (In+A) 'In+A) (In—A)
= I, I, =1In.

5. det(I, — A) = det(I, — A)T = det(I, + A) et det(I, + A)~1

et son déterminant vaut +1, donc elle appartient & SOy (R).

_ 1
= det(I,+A)’

d’out det R = +1. La matrice R est orthogonale



