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Exercice 1. Soient un espace euclidien E et une application f de E vers E. On dit que f :

— conserve la distance si ∀(u, v) ∈ E2, ∥f(u)− f(v)∥ = ∥u− v∥ ;
— conserve le produit scalaire si ∀(u, v) ∈ E2, ⟨f(u)|f(v)⟩ = ⟨u|v⟩.

1. Montrer que f conserve le produit scalaire si, et seulement si, f(0E) = 0E et f conserve la distance.

2. Donner un exemple d’application f qui conserve la distance mais telle que f(0E) ̸= 0E .

1. Si f(0E) = 0E et f conserve la distance, alors :

⟨f(u)|f(v)⟩ = 1
2

(
∥f(u)∥2 + ∥f(v)∥2 − ∥f(u)− f(v)∥2

)
(identité de polarisation)

= 1
2

(
∥f(u)− f(0E)∥2 + ∥f(v)− f(0E)∥2 − ∥f(u)− f(v)∥2

)
car f(0E) = 0E

= 1
2

(
∥u− 0E∥2 + ∥v − 0E∥2 − ∥u− v∥2

)
car f conserve la distance

= 1
2

(
∥u∥2 + ∥v∥2 − ∥u− v∥2

)
= ⟨u|v⟩ (identité de polarisation).

Réciproquement, si f conserve le produit scalaire, alors : ∥f(0E)∥2 = ⟨f(0E)|f(0E)⟩ = ⟨0E |0E⟩ = 0, d’où f(0E) = 0E . Et

∥f(u)− f(v)∥2 = ⟨f(u)|f(u)⟩+ ⟨f(v)|f(v)⟩ − 2⟨f(u)|f(v)⟩
= ⟨u|u⟩+ ⟨v|v⟩ − 2⟨u|v⟩ car f conserve le produit scalaire
= ∥u− v∥2.

2. Soient a un vecteur non nul de E et f la translation de vecteur a, définie par : ∀x ∈ E, f(x) = x + a. Dune part
f(0E) = a ̸= 0E . D’autre part ∥f(u)− f(v)∥ = ∥u− v∥ car f(u)− f(v) = (u+ a)− (v + a) = u− v.

Exercice 2. Soit u une isométrie vectorielle d’un espace euclidien E.

1. Montrer que toute valeur propre réelle de u appartient à {−1;+1}.
2. Montrer que les sous-espaces vectoriels Ker(u− idE) et Ker(u+ idE) sont orthogonaux.

3. Soient F et G deux sev de E. Montrer que : si F ⊥ G, alors u(F ) ⊥ u(G).

4. Soit F un sev de E. Montrer que u(F⊥) = (u(F ))
⊥
.

1. Si λ ∈ R est une valeur propre de u, alors il existe un vecteur non nul x ∈ E tel que u(x) = λx. D’où ∥u(x)∥ = |λ| ∥x∥. Or
u conserve la norme, d’où ∥u(x)∥ = ∥x∥. Par suite ∥x∥ = |λ| ∥x∥. En outre, x ̸= 0E , d’où ∥x∥ ̸= 0, donc |λ| = 1.

2. Si x ∈ SEP (+1) et y ∈ SEP (−1), alors u(x) = x et u(y) = −y, d’où ⟨u(x)|u(y)⟩ = ⟨x| − y⟩ = −⟨x|y⟩. Mais u conserve le
produit scalaire, d’où ⟨u(x)|u(y)⟩ = ⟨x|y⟩. On en déduit que ⟨x|y⟩ = 0. Donc SEP (+1) ⊥ SEP (−1).

3. Commençons par remarquer que u(F ) et u(G) sont bien des sev car ce sont les images de sev par une application linéaire.
Soient x ∈ u(F ) et y ∈ u(G) : on veut montrer que x ⊥ y.

Il existe x0 ∈ F et y0 ∈ G tels que x = u(x0) et y = u(y0) :

⟨x|y⟩ = ⟨u(x0)|u(y0)⟩
= ⟨x0|y0⟩ car u est une isométrie

= 0 car x0 ⊥ y0 car F ⊥ G.

Donc u(F ) ⊥ u(G).



4. F ⊥ F⊥, d’où (grâce à la question précédente) : u(F⊥) ⊥ u(F ), ce qui équivaut à : u(F⊥) ⊂ (u(F ))⊥ .

Il reste à montrer l’autre inclusion et c’est une affaire de dimensions : d’une part, u est bijective, d’où dimu(F⊥) = dimF⊥

et dimu(F ) = dimF . D’autre part, E est de dimension finie, d’où dim (u(F ))⊥ = dimE − dimu(F ) (car u(F ) et u(F )⊥

sont supplémentaires) et dimF⊥ = dimE − dimF (car F et F⊥ sont supplémentaires).

D’où u(F⊥) ⊂ (u(F ))⊥ et ces deux sev ont même dimension, donc il sont égaux.

Exercice 3. Soit u un endomorphisme d’un espace euclidien E. Montrer que :

Ker(u∗) = (Imu)⊥ et Im(u∗) = (Keru)⊥.

• On va prouver la propriété ♡ : Ker(u∗) = (Imu)⊥ par double inclusion.

Montrons que Ker(u∗) ⊂ (Imu)⊥ : soient x ∈ Ker(u∗) et y ∈ Imu. Il existe z ∈ E tel que y = u(z), d’où

⟨x, y⟩ = ⟨x, u(z)⟩
= ⟨u∗(x), z⟩ par définiton de u∗

= 0 car x ∈ Ker(u∗).

Montrons que (Imu)⊥ ⊂ Ker(u∗) : soit y ∈ (Imu)⊥. Alors ∀x ∈ E, ⟨y, u(x)⟩ = 0. Or ⟨y, u(x)⟩ = ⟨u∗(y), x⟩ par définition de
u∗. D’où : ∀x ∈ E, ⟨u∗(y), x⟩ = 0. En particulier, ⟨u∗(y), u∗(y)⟩ = 0. Donc u∗(y) = 0E .

• On veut prouver que Im(u∗) = (Keru)⊥ . Or ces sev sont de dimension finie (donc égaux à l’orthogonal de leur orthogonal).La
propriété est donc équivalente à Im(u∗)⊥ = Keru. Il suffit de remplacer u par u∗ dans la propriété ♡ car (u∗)∗ = u.

Exercice 4. Diagonaliser, si possible, la matrice

A =


0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0


dans une base orthonormée. (Revoir les deux méthodes de � l’exo 2 de la colle no 7 et tenter une troisième
méthode utilisant le théorème spectral.)

On remarque que le rang de la matrice A vaut 2 et que les deux vecteurs e1 = (1,−1, 0, 0) et e2 = (1, 0,−1, 0) sont libres et
dans le noyau, donc forment une base de SEP (0). Ils ne sont pas orthogonaux, on y remédie :

e′2 = e2 − αe1 ⊥ e1 ⇐⇒ ⟨e2 − αe1|e1⟩ = 0

⇐⇒ ⟨e2|e1⟩ − α⟨e1|e1⟩ = 0

⇐⇒ 1− α× 2 = 0

⇐⇒ α = 1/2

⇐⇒ e′2 = (1/2, 1/2,−1, 0)

Les autres sous-espaces propres sont orthogonaux à SEP (0) d’après le théorème spectral, donc leurs vecteurs (x, y, z, t) vérifient
du système : {

x −y +0 +0 = 0
x +0 −z +0 = 0

et sont donc de la forme (x, x, x, t).

Analyse – L’image d’un tel vecteur par A est :

A


x
x
x
t

 =


t
t
t
3x

 .

S’il est propre et associé à une valeur propre λ, alors t = λx et 3x = λt, d’où 3x = λ2x. Et x ̸= 0, d’où λ = ±
√
3.



Synthèse – Les vecteurs propres e3 = (1, 1, 1,
√
3) et e4 = (1, 1, 1,−

√
3) sont propres et associés respectivement aux valeurs

propres +
√
3 et −

√
3. Ces valeurs propres sont distinctes, ces vecteurs propres sont donc orthogonaux. Une base orthogonale

formée de vecteurs propres est donc :

(e1, e2, e3, e4) = ((1,−1, 0, 0), (1/2, 1/2,−1, 0), (1, 1, 1,
√
3), (1, 1, 1,−

√
3)).

Une fois normés ces vecteurs, on obtient une b.o.n. formée de vecteurs propres :

(e1, e2, e3, e4) =

(
1
√
2
(1,−1, 0, 0),

√
2
√
3
(1/2, 1/2,−1, 0),

1
√
6
(1, 1, 1,

√
3),

1
√
6
(1, 1, 1,−

√
3)

)
.

Matriciellement : la matrice de passage

P =


1√
2

√
2

2
√
3

1√
6

1√
6

−1√
2

√
2

2
√
3

1√
6

1√
6

0 −
√

2√
3

1√
6

1√
6

0 0 1√
2

1
−
√
2

 est telle que PT = P−1 et P−1AP =


0 0 0 0
0 0 0 0

0 0
√
3 0

0 0 0 −
√
3

 .

Exercice 5.

1. Soit u un endomorphisme autoadjoint d’un espace euclidien E. Soient λmin la plus petite valeur propre
de u et λmax la plus grande. Montrer que :

∀x ∈ E, λmin⟨x|x⟩ ≤ ⟨x|u(x)⟩ ≤ λmax⟨x|x⟩.

2. Soit une matrice symétrique S = (sij) ∈ Sn(R). Soient λmin la plus petite valeur propre de S et λmax la
plus grande. Montrer que :

∀i ∈ J1, nK, λmin ≤ sii ≤ λmax.

3. Soient deux matrices A et B de Mn(R). Soient α et β les plus grandes valeurs propres de AT ·A et de
BT ·B respectivement. Montrer que :

∀λ ∈ Sp(AB), λ2 ≤ α · β.

1. L’endomorphisme u est autoadjoint, d’où (théorème spectral) il existe une base orthonormée (ε1, · · · , εn) de E formée de vec-
teurs propres de u : ∀i ∈ J1, nK, u(εi) = λiεi. D’où, pour tout x =

∑n
i=1 xiεi ∈ E, ⟨x|u(x)⟩ = ⟨

∑n
i=1 xiεi|

∑n
j=1 xjλjεj⟩ =∑

1≤i,j≤n xiλjxj⟨εi|εj⟩ =
∑

1≤i,j≤n xiλjxjδi,j =
∑n

i=1 λix
2
i .

Donc λmin∥x∥2 =
∑n

i=1 λminx
2
i ≤ ⟨x|u(x)⟩ ≤

∑n
i=1 λmaxx2

i = λmax∥x∥2.
2. On munit Rn du produit scalaire canonique. L’endomorphisme u : X 7→ S ·X est symétrique car sa matrice, dans la base

canonique de Rn, est S. Or cette base est orthonormée et cette matrice est symétrique. On applique l’encadrement de la
question précédente : λminX

T ·X ≤ XT · S ·X ≤ λmaxXT ·X, pour tout vecteur colonne X. Choisissons pour vecteur X
le i−ème vecteur de la base canonique : XT ·X = 1 et XT · S ·X = sii. Donc λmin ≤ sii ≤ λmax.

3. On déduit de l’encadrement de la première question, appliqué à l’endomorphisme représenté par la matrice symétrique
AT ·A, l’inégalité : XT · (AT ·A) ·X ≤ αXT ·X Or XT · (AT ·A) ·X = (AX)T · (AX) = ∥AX∥2. D’où ∥AX∥2 ≤ α∥X∥2
pour tout X. De même, ∥BX∥2 ≤ β∥X∥2 pour tout X.

Si λ est une valeur propre de AB, alors il existe un vecteur X non nul tel que (AB)X = λX. D’où ∥(AB)X∥2 = λ2 ∥X∥2.
Or (AB)X = A(BX), d’où ∥(AB)X∥2 ≤ α∥BX∥2 ≤ αβ∥X∥2.

D’où λ2 ∥X∥2 ≤ αβ∥X∥2. Or le vecteur X n’est pas nul, donc : λ2 ≤ α · β.

Exercice 6. � exo 3 du TD no 12. Soit E un espace euclidien, u un vecteur de E tel que ||u|| = 1.
Pour chaque réel α, on définit l’endomorphisme φα par :

∀x ∈ E, φα(x) = x+ α⟨x, u⟩u.

1. Montrer que φα est un endomorphisme autoadjoint de E.



2. Montrer que l’endomorphisme φα est une isométrie vectorielle si, et seulement si, α = 0 ou α = −2.
Reconnâıtre l’endomorphisme φα dans ces deux cas.

1. Soit x, y ∈ E. On a :
⟨φα(x)|y⟩ = ⟨x+ α⟨x, u⟩u|y⟩

= ⟨x|y⟩+ α⟨x, u⟩⟨u|y⟩
= ⟨x|y⟩+ ⟨x, α⟨u|y⟩u⟩
= ⟨x, y + α⟨y|u⟩u⟩
= ⟨x, φα(y)⟩.

2. Soient x et y deux vecteurs de E. Il existe un unique couple (x1, x2) ∈ Vect(u) × Vect(u)⊥ et un unique couple
(y1, y2) ∈ Vect(u)×Vect(u)⊥ tel que x = x1 + x2 et y = y1 + y2. On a donc

⟨x|y⟩ = ⟨x1 + x2|y1 + y2⟩
= ⟨x1|y1⟩+ ⟨x2|y1⟩+ ⟨x1|y2⟩+ ⟨x2|y2⟩
= ⟨x1|y1⟩+ ⟨x2|y2⟩

De même on obtient l’égalité

⟨φα(x)|φα(y)⟩ = ⟨φα(x1 + x2)|φα(y1 + y2)⟩
= ⟨(1 + α)x1 + x2|(1 + α)y1 + y2⟩
= (1 + α)2⟨x1|y1⟩+ ⟨x2|y2⟩

Donc φα est une isométrie si, et seulement si, pour tous x1 et y1 dans Vect(u),

(1 + α)2⟨x1|y1⟩ = ⟨x1|y1⟩.

Si (1 + α)2 = 1, alors φα est une isométrie. Réciproquement : φα est une isométrie alors dans le cas particulier où
x1 = y1 = u, (1 + α)2 = 1. Donc φα est une isométrie si, et seulement si, α = 0 ou α = −2.

Si α = 0, alors φα est l’identité. Si α = −2, alors φα est la symétrie orthogonale par rapport à Vect(u)⊥.

Exercice 7 (Matrices symétriques positives). Soient n et p deux entiers naturels non nuls.

1. Soit B ∈ Mpn(R). Montrer que la matrice BTB est une matrice symétrique positive, i.e. BTB ∈ S+
n (R).

2. Soit A une matrice symétrique, i.e. A ∈ Sn(R). Montrer que A est définie positive si, et seulement si,
elle est positive et inversible.

3. Soit A ∈ S+
n (R). Montrer qu’il existe une matrice B ∈ S+

n (R) telle que A = B2. Et que cette matrice B
est unique. On l’appelle la racine carrée de A.

1. D’une part, la matrice BTB est carrée : B ∈ Mpn(R), d’où BT ∈ Mnp(R) et BTB ∈ Mnn(R). D’autre part, elle
est symétrique car (BT · B)T = BT · (BT )T = BT · B. Enfin, elle est positive car : ∀X ∈ Mn1(R), XT (BTB)X =
(BX)T (BX) = ∥BX∥2 ≥ 0.

2. Soit A ∈ S+n (R) une matrice symétrique positive. On veut montrer qu’elle est définie positive si, et seulement si, elle est
inversible. Si A n’est pas inversible, alors il existe un vecteur colonne X non nul tel que AX = 0. D’où XTAX = 0, donc
la matrice A n’est pas définie positive. Réciproquement : si A est inversible, alors 0 n’appartient pas à Sp(A), d’où toutes
les valeurs propres de A sont strictement positives, donc A est définie positive.

3. Soit A ∈ S+n (R). La matrice A est symétrique, d’où, d’après le théorème spectral, il existe une matrice orthogonale P
telle que la matrice D = PTAP est diagonale. La matrice A est positive, d’où la matrice D s’écrit diag(λ1, · · · , λn) où
les valeurs propres λi sont positives, ce qui permet de définir la matrice C = diag(

√
λ1, · · · ,

√
λn). Alors A = PC2PT =

PCPTPCPT = B2, où la matrice B = PCPT est :

— symétrique car BT = PCTPT = B car CT = C ;

— positives car ses valeurs propres
√
λ1, · · · ,

√
λn sont positives.

Reste à prouver l’unicité (revoir aussi � Kdo du 10/11/2025) :

• Première rédaction (sans matrices) : soit a l’endomorphisme représenté, dans une bon d’un espace euclidien E, par
la matrice A. Si a = b ◦ b, alors b commute avec a, d’où les sep de a sont stables par b. Soient λ une valeur propre de a,
Eλ(a) le sep de a associé à la valeur propre λ et bλ l’endomorphisme induit par b sur ce sep (bλ est bien défini car Eλ(a)
est stable par b).



D’une part, bλ ◦ bλ = λidEλ(a). Par suite toutes les valeurs propres de bλ ont pour carré λ, donc sont égales ±
√
λ. De plus

b est, par hypothèse, un endomorphisme autoadjoint positif. Par suite, toutes ses valeurs propres sont positives. Par suite,
toutes les valeurs propres de bλ sont égales à +

√
λ.

D’autre part, l’endomorphisme bλ est autoadjoint car l’endomorphisme b l’est. Par suite bλ est diagonalisable.

On en déduit que bλ = +
√
λidEλ(a) est déterminé de manière unique pour chaque λ ∈ Sp(a). Et donc l’endomorphisme b

est unique.

• Seconde rédaction (avec matrices) : on sait déjà que la matrice D = PTAP est diagonale. La matrice B commute
avec A = B2, donc les sep de A sont stables par B. Par suite la matrice C = PTBP est, non seulement symétrique comme
on le sait déjà, mais aussi diagonale par blocs :

D =



d1←→ d2←→ · · · dr←→

d1

xy λ1Id1
... 0

· · · · · · · · · · · ·

d2

xy 0
... λ2Id2

... 0
· · · · · ·

...
. . .

0 · · · · · ·

dr

xy ... λrIdr


et C =



d1←→ d2←→ · · · dr←→

d1

xy B1

... 0
· · · · · · · · · · · ·

d2

xy 0
... B2

... 0
· · · · · ·

...
. . .

0 · · · · · ·

dr

xy ... Br


.

Et, pour chaque i, B2
i = λiIdi car C2 = D d’une part. D’autre part, le bloc Bi appartient à S+

di
(R) car la matrice C

appartient à S+
n (R). Le bloc Bi est donc diagonalisable, ses valeurs propres sont positives et leur carré vaut λi. D’où

Bi = +
√
λiIdi . Ceci détermine complètement la matrice C et donc aussi la matrice B = PCPT , ce qui prouve qu’elle est

unique.

Exercice 8. Soient E un espace euclidien, λ un réel et f une isométrie vectorielle de E telle que (f − λidE)
2
= 0.

1. Montrer que (Ker(f − λidE))
⊥

est stable par f .

2. En déduire que (Ker(f − λidE))
⊥
= {0E}.

3. Conclure que f = ±idE .

1. Les endomorphismes f et g = f − λidE commutent, d’où : le sev G = Ker(g) est stable par f � prop. 16 du chap. II.

L’endomorphisme f est une isométrie vectorielle, d’où (stabilité de l’orthogonal � proposition 18 du chapitre XII) : G⊥ est

aussi stable pat f . Donc (Ker(f − λidE))⊥ est stable par f .

2. Notons G = Ker(f − λidE). Soit x ∈ G⊥. On veut montrer que ce vecteur x est nul :

— d’une part (f − λidE)(x) ∈ G⊥ par stabilité de G⊥ (question précédente) ;

— d’autre part (f − λidE)(x) ∈ G car (f − λidE)2 = 0 (par hypothèse).

D’où (f − λidE)(x) ∈ G ∩G⊥. Or G ∩G⊥ = {0E}, d’où (f − λidE)(x) = 0E , autrement dit : x ∈ G. Or x ∈ G⊥ depuis le
début. Donc x = 0E . C’est ce qu’on voulait montrer.

3. Le sev G = Ker(f − λidE) est de dimension finie, d’où :
(
G⊥)⊥ = G, d’où G = {0E}⊥ d’après la question précédente.

Donc (Ker(f − λidE) = E : pour tout x ∈ E, f − λidE(x))(x) = 0. Donc f = λidE .

Pour tout vecteur non nul x ∈ E, f(x) = λx. D’où ∥f(x)∥ = |λ| ∥x∥. Or f conserve la norme car c’est une isométrie, d’où
∥f(x)∥ = ∥x∥. Par suite ∥x∥ = |λ| ∥x∥. En outre, x ̸= 0E , d’où ∥x∥ ̸= 0, donc |λ| = 1.

Exercice 9. Écrire la matrice, dans la base orthonormée directe (⃗ı, ȷ⃗, k⃗) de R3, de la rotation d’angle π
6 autour

de l’axe dirigé et orienté par ı⃗+ ȷ⃗.

On cherche la matrice A, dans la bond B = (⃗ı, ȷ⃗, k⃗), de la rotation f d’axe dirigé et orienté par i⃗+ j⃗ et d’angle π
6
.

Le vecteur (normé) w⃗ = i⃗+j⃗√
2

dirige et oriente l’axe de rotation. Un vecteur normal à l’axe de rotation (et normé) est u⃗ = k⃗.

En posant v⃗ = w⃗ ∧ u⃗ = i⃗−j⃗√
2
, on obtient une base orthonormée directe B′ = (u⃗, v⃗, w⃗) adaptée à la rotation f . Dans cette nouvelle

base, la matrice de f est :

A′ = P−1AP =


√
3

2
− 1

2
0

1
2

√
3

2
0

0 0 1

 , où P =

0
√
2
2

√
2

2

0 −
√
2

2

√
2

2
1 0 0





est la matrice de passage de la vieille base B à la nouvelle base B′. D’où A = PA′P−1. Or la vieille et la nouvelle bases sont
orthonormées, d’où les colonnes de la matrice P forment une bon, donc P−1 = PT et

A = P


√
3

2
− 1

2
0

1
2

√
3

2
0

0 0 1

PT =

0
√
2

2

√
2
2

0 −
√
2

2

√
2
2

1 0 0




√
3

2
− 1

2
0

1
2

√
3
2

0
0 0 1

PT

=


√
2

4

√
6

4

√
2

2

−
√
2
4

−
√
6

4

√
2

2√
3

2
−1
2

0


 0 0 1√

2
2

−
√
2

2
0√

2
2

√
2

2
0


=


√
3

4
+ 1

2
−

√
3

4
+ 1

2

√
2

4

−
√
3
4

+ 1
2

√
3

4
+ 1

2
−

√
2

4

−
√
2
4

√
2

4

√
3

2


Remarques (comment vérifier le résultat) :

— les colonnes de la matrice A forment une b.o.n.d. car les vecteurs f(u), f(v) et f(w) sont les images respectives par la
rotation f des vecteurs u, v et w qui formaient une b.o.n.d. ;

— l’axe de la rotaton f est dirigé par w⃗, d’où A ·

1
1
0

 =

1
1
0

 ;

— la trace de la matrice A est égale à celle de la matrice A′, c’est-à-dire à 1 + 2 cos π
6
.

Exercice 10 (tiré de CCINP 2019 TSI Math 2). On munit l’espace vectoriel E = S2(R) des matrices 2× 2
symétriques du produit scalaire ⟨A,B⟩ = tr(ATB).

1. Un cas particulier — Montrer que l’application f qui, à toute matrice M =

(
a b
b c

)
, associe la matrice

f(M) =

(
a+c
2 − b a−c

2
a−c
2

a+c
2 + b

)
est une rotation de E qui conserve la trace et le déterminant : f ∈ SO(E)

et ∀M ∈ E, tr f(M) = trM et det f(M) = detM. Déterminer les sous-espaces propres de f .

2. Le cas général — Soit f une isométrie de E laissant invariante la matrice identité : f ∈ O(E) et
f(I2) = I2. Montrer que f conserve la trace et le déterminant.

1. L’application f : E → E est un endomorphisme car elle est linéaire et l’image de toute matrice symétrique 2 × 2 est
encore une matrice symétrique 2× 2.

L’endomorphisme f est une rotation de E ssi sa matrice dans une b.o.n. de E est spéciale orthogonale � définition XII.28.

L’ev E = S2(R) est de dimension 3. Les trois matrices

I =
1
√
2

(
1 0
0 1

)
, J =

1
√
2

(
1 0
0 −1

)
et K =

1
√
2

(
0 1
1 0

)
forment une base (I, J,K) de l’ev E des matrices 2× 2 symétriques. Et cette base est orthonormée pour le produit scalaire
⟨A,B⟩ = tr(ATB).

Parce que f(I) = I, f(J) = K et f(K) = −J , la matrice de l’endomorphisme f dans cette base (I, J,K) est

[f ](I,J,K) =


f(I) f(J) f(K)

I 1 0 0
J 0 0 −1
K 0 1 0

.

Cette matrice est orthogonale car ses colonnes forment une base orthonormée. De plus, son déterminant vaut 1, elle
appartient donc à SO3(R). L’application f est donc une rotation de E.

De plus f conserve la trace car tr f(M) = a+c
2
− b + a+c

2
+ b = a + c = trM. Et conserve le déterminant car

det f(M) =
(
a+c
2
− b
) (

a+c
2

+ b
)
−
(
a−c
2

)2
= ac− b2 = detM.

Soit χf Le polynôme caractéristique de f : pour tout x ∈ R,

χf (x) = det(xidE − f) =

∣∣∣∣∣∣
x− 1 0 0
0 x 1
0 −1 x

∣∣∣∣∣∣ = (x− 1)(x2 + 1).

D’où SpR(f) = {1} et 1 ≤ dimSEP (1) ≤ 1. Or f(I) = I. Donc SEP (1) = Vect(I).



2. L’endomorphisme f de la question prcédente est bien un cas particulier car c’est une rotation, donc une isométrie. Et
f(I2) = I2, donc il laisse invariante la matrice identité.

Dans la cas général : si f est une isométrie, alors f conserve le produit scalaire. En particulier :♡
{
⟨M, I2⟩ = ⟨f(M), f(I2)⟩
⟨M,M⟩ = ⟨f(M), f(M)⟩

pour toute matrice M =

(
a b
b c

)
.

D’une part ⟨M, I2⟩ = a× 1 + b× 0 + b× 0 + c× 1 = a+ c = trM. Et f(I2) = I2 par hypothèse, d’où ⟨f(M), f(I2)⟩ =
⟨f(M), I2⟩ = tr f(M). Donc l’application f conserve la trace.

D’autre part ⟨M,M⟩ = a2 + b2 + b2 + c2 = a2 +2b2 + c2. D’où ⟨M,M⟩ − ⟨M, I2⟩2 = a2 +2b2 + c2 − (a+ c)2 = 2b2 − 2ac =
−2(ac− b2) = −2 detM. De même, ⟨f(M), f(M)⟩ − ⟨f(M), I2⟩2 = −2 det f(M).

De ♡ et de f(I2) = I2, on déduit que −2 det f(M) = −2 detM . Donc f conserve le déterminant.

Exercice 11 (Endomorphismes normaux). Soit u un endomorphisme d’un espace euclidien E tel que u ◦ u∗ =
u∗ ◦ u. (On dit d’un tel endomorphisme qu’il est normal.)

1. Montrer que, pour tout (x, y) ∈ E2, ⟨u(x), u(y)⟩ = ⟨u∗(x), u∗(y)⟩.
2. En déduire que u et u∗ ont les mêmes spectre et sous-espaces propres.

3. Montrer que, si un sev F est stable par u, alors son orthogonal F⊥ est aussi stable par u.

4. On suppose que dimE = 2. Montrer que u est un endomorphisme autoadjoint ou la composée d’une
homothétie et d’une rotation.

1. Soit (x, y) ∈ E2 : ⟨u(x), u(y)⟩ = ⟨u∗ ◦ u(x), y⟩ par définition de l’adjoint. Or u∗ ◦ u = u ◦ u∗ par hypothèse. Donc
⟨u(x), u(y)⟩ = ⟨u ◦ u∗(x), y⟩ = ⟨u∗(x), u∗(y)⟩ par définition de l’adjoint.

2. Soit un vecteur x ∈ E et un scalaire λ ∈ R : ∥u∗(x)− λx∥2 = ∥u∗(x)∥2 − 2λ⟨u∗(x), x⟩+ λ2∥x∥2.

Or ∥u∗(x)∥2 = ∥u(x)∥2 d’après la première question et ⟨u∗(x), x⟩ = ⟨x, u(x)⟩ par définition de l’adjoint.

D’où ∥u∗(x)− λx∥2 = ∥u(x)− λx∥2. On en déduit que x est un vecteur propre de u∗ associé à la valeur propre λ si, et
seulement si, c’est un vecteur propre de u associé à la même valeur propre. L’endomorphisme u et son adjoint ont donc les
mêmes éléments propres.

3. On se place dans une base adaptée B obtenue en concaténant une bon de F et une bon de F⊥. La base B est ainsi une bon
de E. Soit M = [u]B la matrice de u dans cette base.

D’une part, parce que le sev F est stable par u, la matrice M est triangulaire par blocs : M =

(
A B
0 C

)
.

D’autre part, parce que la base B est orthonormée, [u∗]B = MT , d’où [u∗]B =

(
AT 0
BT CT

)
.

L’endomorphisme u est normal, d’où u ◦ u∗ = u∗ ◦ u, donc M ·MT = MT ·M . Par suite :


A ·AT +B ·BT = AT ·A
B · CT = AT ·B
C ·BT = BT ·A
C · CT = BT ·B + CT · C

.

De la première équation, on déduit que B · BT = AT · A− A · AT et, par suite, tr(B · BT ) = tr(AT · A− A · AT ). Or
tr(AT · A− A · AT ) = tr(AT · A)− tr(A · AT ) = 0. Et tr(B · BT ) = ∥B∥2, en utilisant la norme usuelle d’une matrice
carrée. D’où ∥B∥2 = 0, donc B = 0.

La matrice M est donc diagonale par blocs : M =

(
A 0
0 C

)
, ce qui implique que le sev F⊥ est stable u.

4. On se place dans un bon de E. Dans cette base, l’endomorphisme u est représenté par une matrice A =

(
a c
b d

)
et,

parce que la base est orthonormée, son adjoint u∗ est représenté par la matrice transposée AT =

(
a b
c d

)
:

u ◦ u∗ = u∗ ◦ u d’où A ·AT = AT ·A d’où b2 = c2 et ab+ cd = ac+ bd.

Premier cas : b = c. Alors A = AT , d’où u = u∗ est autoadjoint.

Second cas : b = −c. Alors ab+ cd = ac+ bd, d’où (b = c = 0 ou a = d).



Dans le premier sous-cas, la matrice A est diagonale donc symétrique, d’où u est auto-adjoint. Dans le second sous-cas, il

existe θ ∈ R tel que A =

(
a −b
b a

)
=
√
a2 + b2

(
cos θ − sin θ
sin θ cos θ

)
et A est donc le produit de

√
a2 + b2I2, matrice d’une

homothétie et de

(
cos θ − sin θ
sin θ cos θ

)
, matrice d’une rotation.

Exercice 12 (Le produit vectoriel). Soit B = (⃗ı, ȷ⃗, k⃗) une base orthonormée directe d’un espace euclidien orienté
E de dimension 3.

1. Soient deux vecteurs v⃗ = v1⃗ı + v2ȷ⃗ + v3k⃗ ∈ E et w⃗ = w1⃗ı + w2ȷ⃗ + w3k⃗ ∈ E. Montrer qu’il existe un
unique vecteur a⃗ ∈ E tel que : ∀u⃗ ∈ E, detB(u⃗, v⃗, w⃗) = u⃗ · a⃗.

Ce vecteur est noté v⃗ ∧ w⃗ et est appellé le produit vectoriel des vecteurs v⃗ et w⃗.

2. Montrer que : v⃗ ∧ w⃗ = (v2w3 − v3w2)⃗ı+ (v3w1 − v1w3)ȷ⃗+ (v1w2 − v2w1)k⃗.

3. À quelle condition le produit vectoriel v⃗ ∧ w⃗ est-il nul ? Cette condition est-elle nécessaire ? suffisante ?

4. Montrer que, si v⃗ et w⃗ sont deux vecteurs non colinéaires, alors le vecteur v⃗ ∧ w⃗ est orthogonal au plan
Vect(v⃗, w⃗). Et que (v⃗, w⃗, v⃗ ∧ w⃗) est une base directe.

5. Montrer que :
(v⃗ ∧ w⃗) · (v⃗ ∧ w⃗) + (v⃗ · w⃗)2 = (v⃗ · v⃗) (w⃗ · w⃗) .

En déduire que la norme du vecteur v⃗ ∧ w⃗ est égale à l’aire du parallélogramme construit sur les vecteurs
v⃗ et w⃗, autrement dit :

∥v⃗ ∧ w⃗∥ = ∥v⃗∥ ∥w⃗∥ | sin(v⃗, w⃗)|.

1. L’application φ : E → R, u⃗ 7→ detB(u⃗, v⃗, w⃗) est une forme linéaire (car le déterminant est multilinéaire) et l’ev E
est de dimension finie. D’après le théorème de représentation de Riesz, il existe donc un unique vecteur a⃗ tel que :
∀u⃗ ∈ E, φ(u⃗) = u⃗ · a⃗.

2. On développe le déterminant 3× 3 en suivant la première colonne :∣∣∣∣∣∣
u1 v1 w1

u2 v2 w2

u3 v3 w3

∣∣∣∣∣∣ = u1 ·
∣∣∣∣ v2 w2

v3 w3

∣∣∣∣− u2 ·
∣∣∣∣ v1 w1

v3 w3

∣∣∣∣+ u3 ·
∣∣∣∣ v1 w1

v2 w2

∣∣∣∣ .
La base B étant orthonormée, on reconnâıt le produit scalaire du vecteur u⃗ de coordonnées (u1, u2, u3) et d’un vecteur
v⃗ ∧ w⃗ de coordonnées (∣∣∣∣ v2 w2

v3 w3

∣∣∣∣ ,− ∣∣∣∣ v1 w1

v3 w3

∣∣∣∣ , ∣∣∣∣ v1 w1

v2 w2

∣∣∣∣) .

3. Si v⃗ et w⃗ sont liés, alors detB(u⃗, v⃗, w⃗) = 0 pour tout u⃗ ∈ E, d’où : ∀u⃗ ∈ E, u⃗ ·(v⃗∧w⃗) = 0. En particulier, (v⃗∧w⃗) ·(v⃗∧w⃗) = 0,
donc v⃗ ∧ w⃗ = 0⃗. Réciproquement, si la famille (v⃗, w⃗) n’est pas liée, alors on peut la compléter en une base (u⃗, v⃗, w⃗) dont le
déterminant detB(u⃗, v⃗, w⃗) = u⃗ · (v⃗ ∧ w⃗) n’est pas nul, donc v⃗ ∧ w⃗ ̸= 0⃗.

4. v⃗ · (v⃗ ∧ w⃗) = det(v⃗, v⃗, w⃗) = 0, d’où v⃗ ⊥ (v⃗ ∧ w⃗). De même pour w⃗. De plus, par définition du produit vectoriel,
detB(v⃗ ∧ w⃗, v⃗, w⃗) = (v⃗ ∧ w⃗) · (v⃗ ∧ w⃗) est strictement positif car v⃗ ∧ w⃗ ̸= 0⃗ d’après la question précédente.

5. Grâce à la formule de la question 2, on vérifie par le calcul que : (v⃗ ∧ w⃗) · (v⃗ ∧ w⃗) + (v⃗ · w⃗)2 = (v⃗ · v⃗) (w⃗ · w⃗). Par suite,
∥v⃗ ∧ w∥2 = ∥v⃗∥2∥w⃗∥2 − ∥v⃗∥2∥w⃗∥2 cos2(v⃗, w⃗) = ∥v⃗∥2∥w⃗∥2 sin2(v⃗, w⃗).

Exercice 13. Soit A ∈ Mn(R) une matrice antisymétrique.

1. Soit λ une valeur propre complexe de la matrice A et X ∈ Cn un vecteur propre associé.

En calculant XT ·A ·X, montrer que λ est imaginaire pur, autrement dit : que SpC(A) ⊂ iR.
2. Montrer que les matrices In −A et In +A sont inversibles.

3. Vérifier que les matrices In −A et (In +A)−1 commutent.

4. Montrer que la matrice R = (In +A)−1(In −A) est orthogonale.

5. La matrice R appartient-elle à SOn(R) ?



1. D’une part, A est antisymétrique, d’où :

XT ·A ·X = −(AX)T ·X = −(λX)T ·X = −λ(XTX).

D’autre part, les coefficients de A sont réels, d’où :

XT ·A ·X = XT ·AX = XTλX = λ(XTX). D’où −λ(XTX) = λ(XTX).

Or XTX = x1x1 + · · ·+ xnxn = |x1|2 + · · ·+ |xn|2 ̸= 0 car X ̸= 0. D’où λ = −λ. Donc λ ∈ iR.
2. La matrice In −A est inversible si, et seulement si, Ker(In −A) = {0} ⇐⇒ 1 /∈ Sp(A). D’après la question précedente,

Sp(A) ⊂ iR, donc In −A est inversible. De même In +A est inversible.

3. Les matrices In −A et In +A commutent : (In −A)(In +A) = (In +A)(In −A).

Multiplions à droite par (In +A)−1 : (In −A) = (In +A)(In −A)(In +A)−1.

Puis multiplions à gauche par (In +A)−1 :

(In +A)−1(In −A) = (In −A)(In +A)−1.

Donc les matrices In −A et (In +A)−1 commutent.

4. La matrice R est orthogonale car

R ·RT = (In +A)−1(In −A) · (In −A)T
[
(In +A)−1

]T
= (In +A)−1(In −A) · (In −A)T

[
(In +A)T

]−1

= (In +A)−1(In −A) · (In +A) [(In −A)]−1

= (In +A)−1(In +A) · (In −A) [(In −A)]−1

= In · In = In.

5. det(In −A) = det(In −A)T = det(In +A) et det(In +A)−1 = 1
det(In+A)

, d’où detR = +1. La matrice R est orthogonale

et son déterminant vaut +1, donc elle appartient à SOn(R).


