
Colle 16 Espaces vectoriels normés

VERBAERE–MONNIER Lucas

Exercice 1. Soit n ∈ N∗ ; on note E =Mn(C)

1. Soit F un espace vectoriel normé et A une partie de F . Quand dit-on que A est un ouvert de F ?
Quand dit-on que A est un fermé de F ? Q est-il un ouvert de R ? un fermé ?

2. Démontrer que l’ensemble H des matrices diagonalisables de E est dense dans E. Ce résultat est-il
encore valable dans Mn(R) ? (On pourra, pour cette dernière question, traiter le cas où n = 2).

3. Démontrer que H n’est pas un ouvert de E et que son intérieur est l’ensemble H ′ des matrices
diagonalisables dont toutes les valeurs propres sont distinctes, en admettant que H ′ est un ouvert
de E.

4. Montrer que H ′ est un ouvert de E.

1



Solution 1.

1. Cours...

2. Soit T une matrice triangulaire supérieure appartenant à E ; et, pour tout p ∈ N∗, Dp = Diag (1/p, · · · , n/p).
Si on note t1, · · · , tn les éléments de la diagonale de T et t′1, · · · , t′n ceux de Dp + T , on a alors,
pour tout couple (i, j),

— si i = j alors |t′i − t′j | = 1
p (i− j) 6= 0

— si i 6= j alors
|t′i−t′j | = |ti−tj− 1

p (i− j) | ≥ |ti − tj |︸ ︷︷ ︸
6=0

− 1
p |i− j|︸ ︷︷ ︸
6=0

6= 0 pour p assez grand. La matrice triangulaire

Dp + T est donc bien diagonalisable pour p assez grand.

Soit M ∈ E, on sait que M est semblable à une matrice triangulaire supérieure T ; on écrit donc
M = P−1

0 TP0 et on pose
∀p ≥ K, Np = P−1

0 (Dp +T )P0. Np est diagonalisable et, en prenant, par exemple, la norme définie
par ‖M‖ = maxmij, on a :

‖M − Np‖ = ‖P−1
0 DpP0‖ ≤ ‖P0‖2‖Dp‖ c’est à dire ‖M − Np‖ ≤ ‖P0‖2

p ce qui prouve que
limp→+∞Np = M . D’où la densité des matrices diagonalisables. Celà ne marche plus dans R car si

on prend la matrice A =

(
0 −1
1 0

)
, elle n’est pas diagonalisable et s’il existait une suite (Mp) de

matrices diagonalisables qui convergeait vers A, le discriminant du polynôme caractéristique (degré
2 !) de chaque Mp est positif ou nul car Mp étant diagonalisable, elle a au moins une valeur propre la
suite de ces discriminants devrait, par continuité, converger vers -4 ; cela fournit une contradiction
lorsque n = 2.

3. On va montrer que son complémentaire n’est pas un fermé en prenant une suite de matrices nilpo-
tentes non nulles (donc non diagonalisables) qui converge vers une matrice diagonalisable. Si n = 2,

il suffit de prendre la suite de matrices (Mp) =

(
0 1

p

0 0

)
qui converge vers la matrice nulle qui

est diagonalisable. Pour n ≥ 3, on prend la suite de matrices (Mp) dont tous les termes sont nuls
sauf celui de la première ligne et deuxième colonne qui vaut 1

p .

On prouve maintenant que H̊ est l’ensemble H ′ des matrices diagonalisables dont toutes les valeurs
propres sont distinctes.

Soit M une matrice diagonalisable ayant deux valeurs propres égales. Alors M n’est pas dans l’in-
térieur de H car on peut trouver une suite de matrice (Mp) qui converge vers M et qui ne sont pas
diagonalisables. En effet :
Soit P une matrice inversible telle que M = PDP−1 où D est diagonale,

D =


λ 0 . . . 0

0 λ 0
...

0 0
. . .

...
0 . . . 0 λn

 , ∀p ∈ N∗ posons Dp =


λ 1/p . . . 0

0 λ 0
...

0 0
. . .

...
0 . . . 0 λn


Alors la suite (Mp) définie par Mp = PDpP

−1 converge vers M et chaque Mp n’est pas diagonali-

sable. Sinon, Dp serait diagonalisable, ce qui n’est pas le cas. On a donc prouvé que H̊ ⊂ H ′ ⊂ H

et, puisqu’on admet que H ′ est un ouvert, on en déduit que H̊ = H ′.

4. Soit M ∈ H ′. Supposons par l’absurde qu’il existe une suite (Mk) de matrices à spectres non simples
convergeant vers M .
Pour tout k, on se donne ak une racine commune de χMk

et χ′Mk
. Le tout est de voir que (ak) est

bornée, car si c’est le cas, en extrayant, on obtiendra par passage à la limite une racine commune à
χM et χ′M , d’où M /∈ H ′, et une contradiction. (au passage on utilise la continuité de χA vis-à-vis
de A, et la continuité de P 7→ P ′)
(χMk

) converge vers χM , donc les coefficients des χMk
sont bornés par une constante C.

En utilisant le caractère unitaire, on a |χMk
(x)| ≥ f(|x|) = |x|n −C|x|n−1 − ...−C →|x|→+∞ +∞,

d’où le résultat.
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LE GOFF Tobias

Exercice 2.

1. Montrer que A 7→ χA est continue sur Mn(C).

2. Soit A ∈Mn(C) diagonalisable. Montrer que S(A) = {P−1AP, P ∈ GLn(C)} est fermé.

3. Montrer que si A admet pour valeur propre λ1, ..., λr de multiplicité respectives n1, ..., nr, alors

Ω =

λ1In1
0

. . .

0 λrInr

 ∈ S(A).

On pourra utiliser la matrice ∆ =Diag (α, · · · , αn) pour α ∈ R. Réciproque ?

4. Caractériser les matrices A pour lesquelles S(A) est borné, fermé.
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Solution 2.

1. Soit ϕ : Mn(C) → C[X], A 7→ χA est continue car les coefficients du polynôme caractéristique
s’écrivent comme des polynômes en les coefficients de la matrice.

2. Soit une suite (Mn = P−1
n APn) ∈ S(A)N qui converge vers M ∈ Mn(C). Pour tout n, Mn =

P−1
n APn est semblable à A, donc est digonalisable de polynôme annulateur minimal scindé pA =∏

λ∈SpecA

(X − λ). Donc, pour tout nN, pA(Mn) = 0. Par continuité, pA(M) = 0 et M est diagona-

lisable.

3. Soit A une matrice. Une base de trigonalisation montre qu’il existe T ∈ S(A) triangulaire supérieure
avec les λi appraissant ni fois sur la diagonale. Si T = (ti,j), alors ∆−1T∆ a pour coefficient aj−iti,j
si j ≥ i et 0 sinon. Quand a tend vers 0, ∆−1T∆ tend vers Ω. Ceci qui montre qu’elle est dans
S(A).
Réciproquement, Si Ω ∈ S(A). Si Ω ∈ S(A), toutes les matrices de S(A) sont semblables à Ω.
Sinon, il existe (Mn) ∈ S(A)N qui converge vers Ω. Le polynôme caractéristique chiMn est constant
donc χMn = χΩ.

4. S’il existe une matrice non diagonale M dans S(A), alors ∆−1A∆, montre que S(A) est non bornée.
Donc A n’est semblable qu’à des matrices diagonales : tout vecteur non nul est vecteur propre, c’est
une homothétie. Enfn, une homothétie convient.
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AMIAUD Florian

Exercice 3. Soit E un espace euclidien de dimension n ≥ 2. On note S = {u ∈ L(E), u2 = IdE}.
1. Montrer que idE est un point isolé de S.

2. Déterminer tous les points isolés.

3. L’ensemble S est-il fermé ? borné ?
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Solution 3.

1. Soit (un) une suite d’éléments de S convergeant vers IdE. Comme un est une symétrie, un = idE
ssi trun = n. La fonction trace étant continue et à valeurs dans Z, donc est constante à partir d’un
certain rang. On en déduit que IdE est un point isolé.

2. Le même raisonnement montre que −IdE est un point isolé. Soit u ∈ S, u 6= ±IdE. Soit e1 un
vecteur propre associé à la valeur propre 1 et e2 associé à la valeur propre −1 que l’on complète
une base de vecteurs de u dans E1(u) puis dans E−1(u). Relativement à cette base, la matrice de u

s’écrit


1 0
0 −1

Ir
−In−r−2

. On pose M(α) =


1 0
−α −1

Ir
−In−r−2

. La suite tend vers

u et u n’est pas un point isolé.

3. S est fermée comme l’image réciproque de {0} par u 7→ u2 − idE. Mais n’est pas bornée comme le

montre l’ensemble des matrices

1 0
α −1

In−2

 en faisant tendre α vers +∞. On aurait pu se

limiter aux symétries orthogonales.
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XXX

Exercice 4. Soient (E, ‖ ‖) un espace vectoriel normé, A une partie de E, f : [0, 1] → E continue. On
suppose que f(0) ∈ A et f(1) ∈ E\A. Montrer que f([0, 1]) ∩ Fr(A) 6= ∅.
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Solution 4. On définit deux suites réelles (un)n≥0 et (vn)n≥0 par récurrence. On pose u0 = 0 et v0 = 1.
Par hypothèse, f(u0) ∈ A et f(v0) ∈ E \ A. Supposons un et vn construits tels que un ≤ vn, f(un) ∈ A
et f(vn) ∈ E \A. Posons mn = (un + vn)/2.

— Si f(mn) ∈ A, on pose un+1 = mn et vn+1 = vn.

— Si f(mn) ∈ E \A, on pose un+1 = un et vn+1 = mn.

Par construction, pour tout n ∈ N, on a un ≤ un+1 ≤ vn+1 ≤ vn, et les propriétés f(un) ∈ A et f(vn) ∈
E \A sont maintenues. La suite (un) est croissante et majorée par v0 = 1. La suite (vn) est décroissante
et minorée par u0 = 0. Elles sont donc convergentes. De plus, vn − un = vn−1−un−1

2 = · · · = v0−u0

2n = 1
2n .

Comme limn→∞(vn − un) = limn→∞ 1/2n = 0, les suites (un) et (vn) sont adjacentes. Elles convergent
donc vers une même limite l ∈ [0, 1].

Puisque f est continue sur [0, 1] et que un → l et vn → l, on a :

lim
n→∞

f(un) = f(l)

lim
n→∞

f(vn) = f(l)

Pour tout n, f(un) ∈ A. Par définition de l’adhérence, la limite d’une suite d’éléments de A est dans
l’adhérence de A, notée A. Donc f(l) ∈ A. Pour tout n, f(vn) ∈ E\A. De même, la limite f(l) appartient
à l’adhérence de E \ A, notée E \A. On a donc f(l) ∈ A et f(l) ∈ E \A. Par définition de la frontière
(ou adhérence) d’un ensemble, Fr(A) = A ∩ E \A. Ainsi, f(l) ∈ Fr(A).

Comme l ∈ [0, 1], le point f(l) appartient à l’image de l’intervalle [0, 1] par f , soit f(l) ∈ f([0, 1]).
Nous avons donc trouvé un point f(l) qui est dans f([0, 1]) et dans Fr(A). L’intersection f([0, 1])∩Fr(A)
est donc non vide.
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