Colle 16 Espaces vectoriels normés

VERBAERE-MONNIER Lucas

Exercice 1. Soit n € N*; on note £ = M,,(C)

1. Soit F' un espace vectoriel normé et A une partie de F'. Quand dit-on que A est un ouvert de F'?
Quand dit-on que A est un fermé de F'7 Q est-il un ouvert de R? un fermé ?

2. Démontrer que ’ensemble H des matrices diagonalisables de F est dense dans E. Ce résultat est-il
encore valable dans M,,(R) ? (On pourra, pour cette derniére question, traiter le cas olt n = 2).

3. Démontrer que H n’est pas un ouvert de E et que son intérieur est I’ensemble H’' des matrices
diagonalisables dont toutes les valeurs propres sont distinctes, en admettant que H’ est un ouvert
de E.

4. Montrer que H' est un ouvert de E.



Solution 1.

1. Cours...
2. Soit T une matrice triangulaire supérieure appartenant a E ; et, pour toutp € N*, D, = Diag (1/p,--- ,n/p).
Si on note t1,--- ,t, les éléments de la diagonale de T et ty,--- ), ceur de D, + T, on a alors,

pour tout couple (i,7),
— sii=j alors \t;ft;|:%(i—j);£0
— si i # j alors
—t| = |ti—t;—= (i — >ty —ti|—= i — our p assez grand. La matrice triangulaire
ti—th| = [ti—tj— (i = J) | = [ti — ;| =5 |i = j| # 0 pourp grand. La matrice triangulai
—— ——
#0 #0
D, + T est donc bien diagonalisable pour p assez grand.
Soit M € E, on sait que M est semblable a une matrice triangulaire supérieure T ; on écrit donc
M = Py 'TPy et on pose
Vp> K, N, = P(;l(Dp +T)Py. N, est diagonalisable et, en prenant, par exemple, la norme définie
par | M| = maxm;;, on a :

|M — N,|| = ||Py'DyPol| < ||Poll?|| Dyl clest a dire |M — N,|| < @ ce qui prouve que

limp_, 4 oo Np = M. D’ot la densité des matrices diagonalisables. Cela ne marche plus dans R car si
. -1 . , G )

on prend la matrice A = ( (1) 0 >, elle n'est pas diagonalisable et s’il existait une suite (M,) de

matrices diagonalisables qui convergeait vers A, le discriminant du polynéme caractéristique (degré
21) de chaque M), est positif ou nul car M, étant diagonalisable, elle a au moins une valeur propre la
suite de ces discriminants devrait, par continuité, converger vers -4 ; cela fournit une contradiction
lorsque n = 2.

3. On va montrer que son complémentaire n’est pas un fermé en prenant une suite de matrices nilpo-

tentes non nulles (donc non diagonalisables) qui converge vers une matrice diagonalisable. Sin = 2,
1

il suffit de prendre la suite de matrices (M,) = 0 8 qui converge vers la matrice nulle qui

est diagonalisable. Pour n > 3, on prend la suite de matrices (M) dont tous les termes sont nuls
sauf celui de la premiére ligne et deuxiéme colonne qui vaut %.

On prouve maintenant que H est Uensemble H' des matrices diagonalisables dont toutes les valeurs
propres sont distinctes.

Soit M une matrice diagonalisable ayant deuz valeurs propres €gales. Alors M n’est pas dans l’in-
térieur de H car on peut trouver une suite de matrice (M,) qui converge vers M et qui ne sont pas
diagonalisables. En effet :

Soit P une matrice inversible telle que M = PDP~! ot D est diagonale,

A0 ... 0 A 1/p ... 0
D= 0 A 0 , Vp € N* posons D, = 0 A 0

0o o0 . 0 O .

0o ... 0 X\, 0 0 A

Alors la suite (M) définie par M, = PD,P~' converge vers M et chaque M, n’est pas diagonali-
sable. Sinon, D, serait diagonalisable, ce qui n’est pas le cas. On a donc prouwvé que H C H' C H
et, puisqu’on admet que H' est un ouvert, on en déduit que H = H'.

4. Soit M € H'. Supposons par Uabsurde qu’il existe une suite (M},) de matrices & spectres non simples
convergeant vers M.
Pour tout k, on se donne ay, une racine commune de X, et Xy, - Le tout est de voir que (ay.) est
bornée, car si c’est le cas, en extrayant, on obtiendra par passage a la limite une racine commune a
XM et Xy, dov M ¢ H', et une contradiction. (au passage on utilise la continuité de x 4 vis-G-vis
de A, et la continuité de P — P')
(Xar,) converge vers xar, donc les coefficients des xar,, sont bornés par une constante C.
En utilisant le caractére unitaire, on a |xar, (2)] > f(|z|) = |@|* = Clz|" ™ — ... = C —|4)5 400 +00,
d’ot le résultat.



LE GOFF Tobias

Exercice 2.
1. Montrer que A — x4 est continue sur M, (C).
2. Soit A € M,,(C) diagonalisable. Montrer que S(A) = {P~!AP, P € GL,(C)} est fermé.

3. Montrer que si A admet pour valeur propre Aj, ..., A, de multiplicité respectives nq, ..., n,, alors
Mln, 0
Q= € S(A).
0 Arln,
On pourra utiliser la matrice A =Diag(a,--- ,a™) pour «a € R. Réciproque ?

4. Caractériser les matrices A pour lesquelles S(A) est borné, fermé.



Solution 2.

1.

Soit ¢ : M, (C) — C[X], A — xa est continue car les coefficients du polyndme caractéristique
s’écrivent comme des polynomes en les coefficients de la matrice.

Soit une suite (M,, = P;YAP,) € S(A)N qui converge vers M € M, (C). Pour tout n, M,, =

P.1AP, est semblable & A, donc est digonalisable de polynéme annulateur minimal scindé pa =
IT (X —=X). Donc, pour tout nN, pa(M,) = 0. Par continuité, pa(M) =0 et M est diagona-

AESpec A

lisable.

Soit A une matrice. Une base de trigonalisation montre qu’il existe T € S(A) triangulaire supérieure

avec les \; appraissant n; fois sur la diagonale. Si T = (t; ;), alors ATYTA a pour coefficient a?~*t; ;

sij > 1 et 0 sinon. Quand a tend vers 0, AT'TA tend vers Q. Ceci qui montre qu’elle est dans

S(A). -

Réciproquement, Si Q € S(A). Si Q € S(A), toutes les matrices de S(A) sont semblables a Q.

Sinon, il existe (M,,) € S(A)N qui converge vers Q. Le polynéme caractéristique chiy, est constant

donc xXm, = Xa-

S’il existe une matrice non diagonale M dans S(A), alors A=Y AA, montre que S(A) est non bornée.

Donc A n’est semblable qu’a des matrices diagonales : tout vecteur non nul est vecteur propre, c’est

une homothétie. Enfn, une homothétie convient.




AMIAUD Florian

Exercice 3. Soit E un espace euclidien de dimension n > 2. On note S = {u € L(E), u? = Idg}.
1. Montrer que idg est un point isolé de S.
2. Déterminer tous les points isolés.

3. L’ensemble S est-il fermé ? borné ?



Solution 3.

1. Soit (uy,) une suite d’éléments de S convergeant vers Idg. Comme wu, est une symétrie, u, = idg
ssi tru, = n. La fonction trace étant continue et a valeurs dans Z, donc est constante a partir d’un
certain rang. On en déduit que Idg est un point isolé.

2. Le méme raisonnement montre que —Idg est un point isolé. Soit u € S, u # £I1dg. Soit e; un
vecteur propre associé a4 la valeur propre 1 et es associé a la valeur propre —1 que l’on complete
une base de vecteurs de u dans E1(u) puis dans E_1(u). Relativement d cette base, la matrice de u

1 0 1 0
-1 —a -1

s’écrit 0 . On pose M () =

. La suite tend vers
I,

I
_In—r—2 —In—r-2

u et u n'est pas un point isolé.

3. S est fermée comme l'image réciproque de {0} par u +— u? — idg. Mais n’est pas bornée comme le
1 0
montre ’ensemble des matrices | a —1 en faisant tendre o vers +o0o0. On aurait pu se
In—2
limiter aux symétries orthogonales.



XXX

Exercice 4. Soient (E,|| ||) un espace vectoriel normé, A une partie de E, f : [0,1] — E continue. On
suppose que f(0) € A et f(1) € E\A. Montrer que f([0,1]) N Fr(A) # 0.



Solution 4. On définit deux suites réelles (un)n>0 €t (Vn)n>0 par récurrence. On pose uyg =0 et vy = 1.
Par hypothese, f(ug) € A et f(vo) € E'\ A. Supposons u,, et v, construits tels que u, < v,, f(u,) € A
et f(v,) € E\ A. Posons my, = (uy, + vy,)/2.

— Si f(my,) € A, on pose Upt1 = My, et Upgp1 = Uy,
— Si f(my,) € E\ A, on pose Uunq1 = Uy €t Upyp1 = My,.

Par construction, pour tout n € N, on a up, < upt1 < Upp1 < vp, et les propriétés f(uy,) € A et f(vy,) €
E\ A sont maintenues. La suite (u,,) est croissante et majorée par vo = 1. La suite (vy,) est décroissante
et minorée par ug = 0. Elles sont donc convergentes. De plus, v, — u, = M == “Oznuo = 2%
Comme limy, 00 (U, — Up) = limy, 00 1/2™ = 0, les suites (up,) et (v,) sont adjacentes Elles convergent
donc vers une méme limite I € [0,1].

Puisque f est continue sur [0,1] et que u, — 1 et v, =1, on a :

lim f(un) = f(1)

n—roo

lim f(v,) = f(I)

n— oo

Pour tout n, f(u,) € A. Par définition de 'adhérence, la limite d’une suite d’éléments de A est dans
l'adhérence de A, notée A. Donc f(1) € A. Pour tout n, f(v,) € E\ A. De méme, la limite f(I) appartient
a Uadhérence de E \ A, notée E\ A. On a donc f(I) € A et f(I) € E\ A. Par définition de la frontiére
(ou adhérence) d’un ensemble, Fr(A) = AN E\ A. Ainsi, f(I) € Fr(A).

Comme | € [0,1], le point f(l) appartient a Uimage de Uintervalle [0,1] par f, soit f(I) € f([0,1]).
Nous avons donc trouvé un point f(1) qui est dans f([0,1]) et dans Fr(A). L’intersection f([0,1]) NFr(A)
est donc non vide.




