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Exercice 1 (Oral Mines Ponts PSI 2016). Soit a ∈ N∗. Une urne contient 2a boules blanches et a boules noires
indiscernables. On effectue une suite de tirages, avec remise, d’une boule de l’urne. Soit X la variable aléatoire
comptant le nombre de tirages effectués lorsqu’on obtient pour la première fois deux boules noires lors de
deux tirages consécutifs.

1. Élaborer une relation de récurrence d’ordre 2 satisfaite par la suite (P (X ⩾ n))n∈N∗ .

2. Montrer que la variable aléatoire X est d’espérance finie et calculer E(X).

3. Déterminer la loi de la variable aléatoire X, id est calculer P (X = n) pour tout n ∈ N∗.

1. (a) On note Bn l’événement « on tire une boule blanche au n-ème tirage ».

Soit n ∈ N. L’événement (X ⩾ n) est l’événement « il n’y a pas eu 2 boules noires consécutives au cours des n− 1
premiers tirages ». D’où P (X ⩾ 1) = P (X ⩾ 2) = 1.

(b) Établissons la relation de récurrence.

Première méthode — (On procède comme dans le DS no 4, i.e. on conditionne par les premiers tirages, ce qui
remet le compteur à zéro.) Pour tout n ≥ 3,

(X ⩾ n) = ((X ⩾ n) ∩B1)
⋃(

(X ⩾ n) ∩B1

)
,

et cette union est disjointe, donc les probabilités s’ajouteront.

D’une part, P ((X ⩾ n) ∩B1) = P (B1) · P (X ⩾ n | B0) =
2
3
· P (X ⩾ n− 1) car on sait que la première boule tirée

est blanche, ce qui remet le compteur à zéro.

D’autre part, (X ⩾ n) ∩ B1 =
[
(X ⩾ n) ∩B1 ∩B2

]⋃ [
(X ⩾ n) ∩B1 ∩B2

]
= (X ⩾ n) ∩ B1 ∩ B2 car le premier

événement de l’union est impossible. Enfin P ((X ⩾ n)∩B1 ∩B2) = P (B1 ∩B2) ·P (X ⩾ n | B1 ∩B2) =
1
3

2
3
·P (X ≥

n− 2) car on sait que la deuxième boule tirée est blanche, ce qui remet le compteur à zéro. Donc

P (X ⩾ n) =
2

3
P (X ⩾ n− 1) +

2

9
P (X ⩾ n− 2).

Seconde méthode — Pour tout n ⩾ 3,

(X ⩾ n) = ((X ⩾ n) ∩Bn−1)
⋃(

(X ⩾ n) ∩Bn−1

)
,

et cette union est disjointe, donc les probabilités s’ajouteront. De plus (X ⩾ n) ∩Bn−1 = (X ⩾ n− 1) ∩Bn−1, et
(X ⩾ n) ∩Bn−1 = (X ⩾ n− 2) ∩Bn−2 ∩Bn−1, d’où, par indépendance des tirages successifs,

P (X ⩾ n) =
2

3
P (X ⩾ n− 1) +

2

9
P (X ⩾ n− 2).

(c) L’équation caractéristique r2 = 2
3
r + 2

9
de la relation de récurrence ci-dessus a pour solutions 1±

√
3

3
, donc

∃(α, β) ∈ R2, ∀n ∈ N∗, P (X ⩾ n) = α

(
1−

√
3

3

)n

+ β

(
1 +

√
3

3

)n

,

et α( 1−
√
3

3
)+β( 1+

√
3

3
) = P (X ⩾ 1) = 1, et α( 1−

√
3

3
)2 +β( 1+

√
3

3
)2 = P (X ⩾ 2) = 1, id est après calculs α = 3−

√
3

4

et β = 3+
√
3

4
.



(d) X(Ω) = N \ {0, 1} et (X ⩾ n) = (X = n) ∪ (X ⩾ n+ 1). Cette union étant disjointe, la loi de X est donnée par :

∀n ∈ X(Ω), P (X = n) = P (X ⩾ n)− P (X ⩾ n+ 1) = · · · =
3 +

√
3

12

(
1−

√
3

3

)n

+
3−

√
3

12

(
1 +

√
3

3

)n

,

cette formule étant encore valable pour n = 1.

2. La v.a. X étant à valeurs dans N, elle est d’espérance finie SSI la série
∑

P (X ⩾ n) converge, auquel cas E(X) =∑∞
n=1 P (X ⩾ n).

Or on vérifie que | 1±
√
3

3
| < 1, donc les séries géométriques

∑
( 1±

√
3

3
)n convergent. Ainsi la série

∑
P (X ⩾ n) est

convergente car c’est une superposition (=une combinaison linéaire) de deux séries convergentes. Et

E(X) =

∞∑
n=1

P (X ⩾ n) =
3−

√
3

4

1−
√
3

3

1− 1−
√
3

3

+
3 +

√
3

4

1+
√
3

3

1− 1+
√
3

3

= · · · = 12.

Exercice 2. Soit E l’ensemble des fonctions f : [0, 1] → R de classe C1 telles que f(0) = 0.

Soient N1 et N2 les applications définies de E vers R par

N1(f) = ∥f ′∥∞ et N2(f) = ∥f + f ′∥∞.

1. Montrer que E est un espace vectoriel et que N1 et N2 sont des normes sur E.

2. Déterminer un réel α > 0 tel que ∀f ∈ E, N2(f) ≤ α ·N1(f).

3. Montrer que, pour tout f ∈ E,

f(x) = e−x

∫ x

0

[f(t) + f ′(t)] etdt.

4. En déduire que les deux normes sont équivalentes.

Soit E l’ensemble des fonctions f : [0, 1] → R de classe C1 telles que f(0) = 0.

Soient N1 et N2 les applications définies de E vers R par

N1(f) = ∥f ′∥∞ et N2(f) = ∥f + f ′∥∞.

1. L’ensemble des fonctions de [0, 1] vers R est un espace vectoriel. De plus, la fonction nulle appartient à E. Et une
combinaison linéaire de fonctions :

— de classe C1 est encore de classe C1 ;

— égales à 0 en 0 est encore égale à 0 en 0.

Donc E est un sous-espace vectoriel de l’espace vectoriel des fonctions de [0, 1] vers R.

Autre méthode — L’ensemble E est le noyau de la forme linéaire C1([0, 1],R) → R, f 7→ f(0), c’est donc un sev de l’ev
C1([0, 1],R).

Si f ∈ E, alors f ′ est continue sur le segment [0, 1], d’où f ′ est bornée, donc la fonction N1 est bien définie sur E. C’est
une norme car :

— N1(f) = 0R =⇒ ∥f ′∥∞ = 0 =⇒ ∀x ∈ [0, 1], f ′(x) = 0. D’où la fonction f est constante sur l’intervalle [0, 1]. Or
f(0) = 0. D’où ∀x ∈ [0, 1], f(x) = 0. Donc f = 0E .

— elle vérifie l’inégalité triangulaire car la norme ∥ · ∥∞ la vérifie.

Si f ∈ E, alors les fonctions f et f ′ sont continues sur le segment [0, 1], d’où f + f ′ est bornée, donc la fonction N2 est
bien définie sur E. C’est une norme car :

— N2(f) = 0R =⇒ ∥f + f ′∥∞ = 0 =⇒ ∀x ∈ [0, 1], f(x) + f ′(x) = 0 =⇒ ∃C ∈ RR, ∀x ∈ [0, 1], f(x) = C · e−x. Or
f(0) = 0, d’où C = 0. D’où ∀x ∈ [0, 1], f(x) = 0. Donc f = 0E .

— elle vérifie l’inégalité triangulaire car la norme ∥ · ∥∞ la vérifie.

2. Soit f ∈ E : N2(f) = ∥f + f ′∥∞ ≤ ∥f∥∞ + ∥f ′∥∞. Or ∀x ∈ [0, 1], f(x)− f(0) =
∫ x
0 f ′(t) dt, d’où f(x) =

∫ x
0 f ′(t) dt (car

f(0) = 0), d’où |f(x)| ≤
∫ x
0 |f ′(t)| dt ≤ |x− 0| × ∥f ′∥∞ ≤ ∥f ′∥∞ (car x ∈ [0, 1]), d’où ∥f∥∞ ≤ ∥f ′∥∞. Donc N2 ≤ 2 ·N1.

3. Soit f ∈ E :

∫ x

0
f ′(t)etdt =

[
f(t)et

]x
0
−
∫ x

0
f(t)etdt en intégrant par partie. Or

[
f(t)et

]x
0
= f(x)ex car f(0) = 0. D’où∫ x

0

[
f(t) + f ′(t)

]
etdt = f(x)ex. Donc f(x) = e−x

∫ x

0

[
f(t) + f ′(t)

]
etdt.



4. |f(x)| ≤ e−x

∫ x

0

∣∣f(t) + f ′(t)
∣∣ etdt ≤ e−x

∫ x

0

∣∣f(t) + f ′(t)
∣∣ exdt ≤ ∫ x

0

∣∣f(t) + f ′(t)
∣∣ dt ≤ |x| × ∥f + f ′∥∞ ≤ ∥f + f ′∥∞.

D’où ∥f∥∞ ≤ ∥f + f ′∥∞.

Or f ′ = f + f ′ − f , d’où ∥f ′∥∞ ≤ ∥f + f ′∥∞ + ∥f∥∞. Donc N1 ≤ 2N2.

Exercice 3. On note ℓ1 l’ensemble des suites réelles u telles que
∑

|un| converge, ℓ2 l’ensemble des suites
réelles u telles que

∑
u2
n converge et ℓ∞ l’ensemble des suites réelles bornées.

1. Montrer que ℓ1, ℓ2 et ℓ∞ sont des sous-espaces vectoriels de RN et que ℓ1 ⊂ ℓ2 ⊂ ℓ∞.

2. On définit sur ℓ1 trois normes par :

∥u∥1 =

+∞∑
n=0

|un| , ∥u∥2 =

(
+∞∑
n=0

u2
n

)1/2

et ∥u∥∞ = sup
n∈N

|un|

pour tout u ∈ ℓ1.

(a) Déterminer, s’il existe, le plus petit réel α tel que ∀u ∈ ℓ1, ∥u∥∞ ≤ α · ∥u∥1 .
(b) Les normes ∥·∥1 et ∥·∥∞ sont-elles équivalentes ?

(c) Les normes ∥ · ∥1 et ∥ · ∥2 sont-elles équivalentes ? Et les normes ∥ · ∥2 et ∥ · ∥∞ ?

1. Si la série numérique
∑

|un| converge, alors la suite un tend vers 0, d’où : à partir d”un certain rang, |un| ≤ 1 et alors
0 ≤ u2

n ≤ |un|, d’où la convergence de la série
∑

u2
n. Donc ℓ1 ⊂ ℓ2.

Si la série
∑

u2
n converge, alors la suite u2

n tend vers 0 et la suite un tend donc aussi vers 0. La suite un est donc
convergente, or toute suite convergente est bornée, donc la suite un est bornée. Donc ℓ2 ⊂ ℓ∞.

La suite nulle appartient à ℓ1, à ℓ2 et à ℓ∞. Reste à montrer que ces ensembles sont stables par combinaisons linéaires, ce
qui en fera des sev de l’ev RN. Soient λ et µ deux réels :

— Si les suites un et vn sont bornées, alors il existe des réels U et V tels que, pour tout n ∈ N, |un| ≤ U et |vn| ≤ V.
D’où |λun + µvn| ≤ |λ|U + |µ|V est majorée, donc ℓ∞ est un sev.

— Si les séries
∑

|un| et
∑

|vn| convergent, alors la série
∑

|λun+µvn| converge aussi car |λun+µvn| ≤ |λ||un|+ |µ||vn|.
Donc ℓ1 est un sev.

— Si les séries
∑

u2
n et

∑
v2n convergent, alors il en est de même de la série

∑
|unvn| car 0 ≤ |unvn| ≤

u2
n+v2

n
2

car

(|un| − |vn|)2 ≥ 0. On en déduit que la série
∑

(λun + µvn)2 converge car (λun + µvn)2 = λ2u2
n + 2λµunvn + µ2u2

n

et les trois séries
∑

u2
n,
∑

v2n et
∑

unvn convergent. Donc ℓ2 est un sev � voir la même question sur L2 dans l’exo 4
du chapitre VIII.

2. (a) Pour toute suite u ∈ E, ∥u∥∞ ≤ ∥u∥1 car ∀n ∈ N, |un| ≤ ∥u∥1 qui est un majorant et le sup est le plus petit majorant.
D’où α = 1 convient, de plus c’est le plus petit réel possible car la suite u définie par u0 = 1 et ∀n ∈ N∗, un = 0
appartient à ℓ1 et vérifie l’égalité ∥u∥∞ = ∥u∥1.

(b) Soit, pour chaque N ∈ N, la suite u(N) définie par :

∀n ∈ N, u
(N)
n = 1 si n ≤ N et u(N) = 0 si n > N.

Chaque suite u(N) appartient bien à ℓ1 et

∥u(N)∥1 = N + 1 , ∥u(N)∥∞ = 1.

Par l’absurde : supposons qu’il existe β ∈ R tel que ∀u ∈ ℓ1, ∥u∥1 ≤ ∥u∥∞. En particulier, ∀N ∈ N, ∥u(N)∥1 ≤
β · ∥u(N)∥∞. C’est absurde. Donc ces deux normes ne sont pas équivalentes.

(c) En utilisant les mêmes suites u(N), on montre de même qu’aucune de ces normes n’est équivalente à l’autre car :

∥u(N)∥1 = N + 1 , ∥u(N)∥∞ = 1 et ∥u(N)∥2 =
√
N + 1.


