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Exercice 1 (Oral Mines Ponts PSI 2016). Soit a € N*. Une urne contient 2a boules blanches et a boules noires
indiscernables. On effectue une suite de tirages, avec remise, d’'une boule de 'urne. Soit X la variable aléatoire
comptant le nombre de tirages effectués lorsqu’on obtient pour la premiere fois deux boules noires lors de
deux tirages consécutifs.

1. Elaborer une relation de récurrence d’ordre 2 satisfaite par la suite (P(X = n))nen-.

2. Montrer que la variable aléatoire X est d’espérance finie et calculer F(X).

3. Déterminer la loi de la variable aléatoire X, id est calculer P(X = n) pour tout n € N*.

1. (a)

(b)

On note By, ’événement « on tire une boule blanche au n-éme tirage ».

Soit n € N. L’événement (X > n) est I’événement « il n’y a pas eu 2 boules noires consécutives au cours des n — 1
premiers tirages ». Dot P(X > 1) = P(X >2) =1.

Etablissons la relation de récurrence. “‘. L X ’ L] ‘ 7’2’

PREMIERE METHODE — (On proceéde comme dans le m i.e. on conditionne par les premiers tirages, ce qui
remet le compteur & zéro.) Pour tout n > 3,

(X>n)=((X=2n)nB)|J(X=n)nB),
et cette union est disjointe, donc les probabilités s’ajouteront.

D’une part, P((X > n)NBy) =P(B1)-P(X >n| By) = % - P(X > n — 1) car on sait que la premiere boule tirée
est blanche, ce qui remet le compteur a zéro.

D’autre part, (X > n) NBl = [(X >n) OEQE] U [(X >n) NBLN BQ} = (X =2n) N Bi N By car le premier
événement de I'union est impossible. Enfin P((X > n)NB1NB2) = P(B1NB2)-P(X >n| BiNB2) = %% -P(X >
n — 2) car on sait que la deuxiéme boule tirée est blanche, ce qui remet le compteur & zéro. Donc

2 2
P(X>n)= gP(X>n—1)+§P(X>n—2).
SECONDE METHODE — Pour tout n > 3,
(X=n)=((X2n)nB, 1) J((X>2n)NnB, 1),

et cette union est disjointe, donc les probabilités s’ajouteront. De plus (X > n) N Bp—1 =(X >2n—1)NBy_1, et
(X2n)NBp—1=(X>n—-2)NBp_2N Bp_1, dol, par indépendance des tirages successifs,

2 2
P(X}n):gP(X>n—1)+§P(X>n—2).

L’équation caractéristique r2 = %r + % de la relation de récurrence ci-dessus a pour solutions 1i3\/§, donc

I(a, B) € R?, Vn € N*, P(X}n)=a<1_3ﬁ> +ﬁ<1+3\/§> ,

et a(l_‘/g) +B( 1+3‘/§) =P(X>1)=1,et 04(1_73‘/5)2 +B( 1+3‘/§)2 = P(X >2) =1, id est apres calculs a = 3—4\/§




(d) X(2)=N\{0,1} et (X > n) = (X =n)U (X > n+1). Cette union étant disjointe, la loi de X est donnée par :

_3+\/§<1—\/§>"+3—\/§<1+\/§>"

v X(Q P(X=n)=P(X >n)—P(X > N="---
neX( ), PX=n)=PX2>n)-PX2=n+1) T 3 B 3
cette formule étant encore valable pour n = 1.

2. La v.a. X étant a valeurs dans N, elle est d’espérance finie SST la série Y P(X > n) converge, auquel cas F(X) =
>3, P(X = n).

Or on vérifie que \%ﬂ\ < 1, donc les séries géométriques Z(lis\/g)” convergent. Ainsi la série Y, P(X > n) est
convergente car c’est une superposition (=une combinaison linéaire) de deux séries convergentes. Et

E(X):iP(X)n)
n=1 1= 1-73

Exercice 2. Soit E I'ensemble des fonctions f : [0,1] — R de classe C* telles que f(0) = 0.

Soient N7 et N, les applications définies de E vers R par

Ni(f) =11f e et No(f) =IIf + fllo-

1. Montrer que E est un espace vectoriel et que N; et Ny sont des normes sur E.
2. Déterminer un réel @ > 0 tel que Vf € E, Nao(f) < a- Ni(f).
3. Montrer que, pour tout f € F,

fle)= e / )+ fo) .

4. En déduire que les deux normes sont équivalentes.

Soit E l’ensemble des fonctions f : [0,1] — R de classe C! telles que f(0) = 0.
Soient N7 et Na les applications définies de E vers R par
Ni(f) = If'llc et Na(f) =IIf + f'lloo-

1. L’ensemble des fonctions de [0,1] vers R est un espace vectoriel. De plus, la fonction nulle appartient & E. Et une
combinaison linéaire de fonctions :
— de classe C! est encore de classe C';
— égales 4 0 en 0 est encore égale a 0 en 0.

Donc E est un sous-espace vectoriel de I’espace vectoriel des fonctions de [0, 1] vers R.

AUTRE METHODE — L’ensemble E est le noyau de la forme linéaire C1([0, 1],R) — R, f ~ f(0), c’est donc un sev de l'ev
c'([0, 1], R).

Si f € E, alors f’ est continue sur le segment [0, 1], d’olt f’ est bornée, donc la fonction Nj est bien définie sur E. C’est
une norme car :
— Ni(f) =0r = ||f']lco =0 = Vz €[0,1], f'(z) =0. Dol la fonction f est constante sur l'intervalle [0,1]. Or
f(0) =0. D’ou Vz € [0,1], f(x) = 0. Donc f =0g.
— elle vérifie I'inégalité triangulaire car la norme || - || la vérifie.
Si f € E, alors les fonctions f et f’ sont continues sur le segment [0, 1], d’ou f + f’ est bornée, donc la fonction N2 est
bien définie sur E. C’est une norme car :
— No(f)=0r = |If+ f'llo =0 = Vz €0,1], f(z)+ f'(x) =0 = 3IC € RR, Vx € [0,1], f(z) =C-e~%. Or
f(0) =0, d’ou C = 0. D’ou Vz € [0,1], f(z) = 0. Donc f =0g.
— elle vérifie I'inégalité triangulaire car la norme || - |0 la vérifie.
2. Soit f € E: Na(f) = [If + f'lloc < Iflloc + [[/'lloc- Or ¥z € [0,1], f(z) — f(0) = [5 f'(t)dt, dot f(x) = [ f'(t)dt (car
£(0) =0), dott |[f()] <[5 |/ ()dt < |z = 0] x [|f']loc < [If' [l (car z € [0,1]), d’0tt [|flloc < [[f'lloc- Donc Nz < 2- Ni.

3. Soit feE: /x f(t)etdt = [f(t)et]g — /w f(t)etdt en intégrant par partie. Or [f(t)et]g = f(x)e® car f(0) = 0. D’ou
0 0

x

/z [(8) + £(1)] e'dt = f(2)e®. Done f(x) = e*ﬂf/ [(8) + F(1)] etd.
0 0



4 |f(@) < e‘m/OIIf(tHf’(t)letdt < -/O 1£(t) + ' (8)] et < /Ozlf(t)+f’(t)|dt < fal X 1f + Flloo < 1 + Flloo

D’ou

Or f/

[Flloo < Nf =+ Flloo-
=+ =1 dou[|f'llc <IIf + flloc + Iflloo- Donc N1 < 2No.

Exercice 3. On note ¢! 'ensemble des suites réelles u telles que > |u,| converge, ¢? 'ensemble des suites
réelles u telles que > u2 converge et £>° I’ensemble des suites réelles bornées.

1. Montrer que £', £% et £ sont des sous-espaces vectoriels de RN et que ¢! C ¢2 C ¢,

2. On définit sur #! trois normes par :

1/2

+oo +oo
lully = funl o ully = D i et lullo = sup fun|
n=0 n=0 neN

pour tout u € 1.

(a)
(b)
()

Déterminer, s'il existe, le plus petit réel o tel que Vu € 01, |lul < a-|ull; .
Les normes ||-||; et |||, sont-elles équivalentes ?
Les normes || - [|1 et || - ||2 sont-elles équivalentes ? Et les normes || - ||2 et || - ||oo ?

1. Si la série numérique > |un| converge, alors la suite un tend vers 0, d’olt : & partir d”un certain rang, |un| <1 et alors
0 < u2 < |up|, d’ott la convergence de la série 3" u2. Donc £ C £2.

Si la série >" u2 converge, alors la suite u2 tend vers 0 et la suite u, tend donc aussi vers 0. La suite u, est donc
convergente, or toute suite convergente est bornée, donc la suite u,, est bornée. Donc £2 C £°,

La suite nulle appartient & ¢1, & €2 et & £°°. Reste & montrer que ces ensembles sont stables par combinaisons linéaires, ce
qui en fera des sev de 'ev RN, Soient A et u deux réels :

Si les suites up et vn, sont bornées, alors il existe des réels U et V' tels que, pour tout n € N, |up| < U et |vp| < V.
D’olt |[Aup + pon| < |AU + |u|V est majorée, donc £°° est un sev.

Si les séries Y |un| et > |vn| convergent, alors la série > |Auy + pon | converge aussi car [Auy, + pon | < [A||un|+|p||vn].
Donc £! est un sev.

Si les séries >"u2 et 3 v2 convergent, alors il en est de méme de la série 3 |unvp| car 0 < |upvp| < M car
(Jun| — |vn])2 > 0. On en déduit que la série 3" (Aun, + pwvn)? converge car (Aun + pvn)? = A2u2 + 2 \punvy + p2u?
et les trois séries > u2, S"v2 et 3" unv, convergent. Donc £2 est un sev > voir la méme question sur Ly dans I’exo 4
du chapitre VIII.

Pour toute suite u € E, ||ullco < ||ull1 car Vn € N, |un| < ||lul/1 qui est un majorant et le sup est le plus petit majorant.
D’ou @ = 1 convient, de plus c’est le plus petit réel possible car la suite u définie par ug =1 et Vn € N*, u, =0
appartient & £1 et vérifie 'égalité ||ul|oo = |lu||1-

Soit, pour chaque N € N, la suite w(V) définie par :

VnEN,uglN)zl si n<N et v =0 si n>N.
Chaque suite u(N) appartient bien & ¢! et
[uMi=N+1 ,  Ju® e =1.

Par l’absurde : supposons qu’il existe 8 € R tel que Yu € £1, ||u|l1 < ||u]|co. En particulier, VN € N, Hu(N)Hl <
B |lu™)]|so. Cest absurde. Donc ces deux normes ne sont pas équivalentes.
En utilisant les mémes suites u(?¥), on montre de méme qu’aucune de ces normes n’est équivalente & I’autre car :

[uMfi=N+1 e =1 et [uM]l2 = VN FTL.



