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Exercice (distance d'un vecteur & un ensemble).

Soit A une partie non vide d’un evn E. Pour tout vecteur x € E, on appelle distance de x a A et on note
d(z, A) le réel

1.
2.

d(z,A) = inf ||lz - a|.

Justifier que le réel d(x, A) est bien défini.
Montrer que la distance de x & A est nulle si, et seulement si, z est adhérent a A, i.e.

d(z,A) =0 < z € A.
Soit (x,y) € E2. Montrer que : Va € A, d(z,A) < ||z — y| + ||y — a|. En déduire que :
|d(z, A) — d(y, A)| < [lz — yl|.

Qu’en déduire sur lapplication x — d(x, A)?
Soit, pour tout n € N*, A, = {z € E | d(z, 4) < 1}.
(a) Montrer que ensemble A,, est un ouvert de F et déterminer ’ensemble ﬂ An.
neN*

(b) En déduire que tout fermé de E est une intersection dénombrable d’ouverts. Et que tout ouvert de
E est une réunion dénombrable de fermés.

On munit Uespace vectoriel E = C([0, 1], R) de la norme ||.||. Soit A ensemble des fonctions f de F
telles que :

FO) = F(1)=0 et /Of(t)dtzl.

(a) Montrer que ’ensemble A est un fermé de C([0, 1], R).

(b) Montrer que la distance de la fonction nulle & 'ensemble A est égale & 1 : d(0, 4) = 1.

(¢) Montrer qu’il n’existe pas de fonction f € A telle que d(0, A) = || f — 0||c (autrement dit : montrer
que cet inf n’est pas un min).

Soit un vecteur € E : Pensemble {||z — a||,a € A} est une partie minorée et non vide de R, elle admet donc une borne
inférieure anelf4 |lx — al|. Donc le réel d(z, A) est bien défini.
La borne inférieure d(x, A) est le plus grand des minorants, c’est donc :

— un minorant, s.e. Va € A, d(z,A) < |z —al;

— le plus grand, i.e. Ve > 0, Ja € A, ||z —a| < d(z,a) +¢.
Par suite

d(z,A) =0 Ve >0, Ja€ A, ||z —a|] <e

Ve >0, Ja € A, a € B(z,¢)
Ve >0, B(z,e)NA# @
TEA
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d(z,A) < ||z —all

3. Soita€ A: o .
|z —al| < ||z —yl|| + ||y — a|| d’apres Pinégalité triangulaire.

Donc Va € A, d(z,A) < [lz —yll + [ly —all (V).

d(z, A) —d(y, A) <[z =yl (1)

On veut montrer que —||z — y|| < d(z, A) — d(y, A) < +||z — y||, c’est-a-dire que :
d(y, A) —d(z, A) < |lz —yll (2)

De (©), on déduit que : Va € A, d(z, A)—|lz—y| < |ly—al et donc que le réel d(x, A) — || —y|| est un minorant de 'ensemble

{lly — a||, a € A}. Ce minorant est inférieur au plus grand des minorants, qui est d(y, A). Donc d(z, A) — ||z — y|| < d(y, A),

ce qui prouve I'inégalité (1). L’inégalité (2) est la méme, apres échange de z et de y.

L’inégalité |d(z, A) — d(y, A)| < ||z — y|| a été prouvée pour tout (x,y) € E2. On en déduit que I'application z +— d(z, A)

est 1—lipschitzienne et, par suite, qu’elle est continue.

4. (a) L’ensemble A, = {z € E | d(z, A) < %} est 'image réciproque de l'intervalle | — oo, %[ par la fonction f : E —

R, z — d(z, A). Or | — oo, %[ est un ouvert de R et lapplication f est continue d’apres la question précédente. Donc
Ap=f"1(- o0, %[) est un ouvert de E.

1
Soitz €E:x€ (| An <= VneN', €A, < VneN", dx,A) < — <= d(z,4) =0.
n
neN*

Or d(z,A) =0 <= z € A d’aprés la question 2. Donc m A, = A
neEN*
(b) Soit F un fermé de E. Alors F est égal & son adhérence F'. Et on vient de montrer que F est Iintersection dénombrable
des ouverts Fi,.

Si O est un ouvert de E, alors son complémentaire F' = E \ O est un fermé. D’ou F = m F,,. Passons au
neN*
complémentaire : O = U Oy, ou chaque Oy, est le complémentaire de I'ouvert Fj, et est donc un fermé.
neN*

5. Les réponses a la question 5 sont manuscrites dans les pages suivantes.
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