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Exercice (distance d’un vecteur à un ensemble).

Soit A une partie non vide d’un evn E. Pour tout vecteur x ∈ E, on appelle distance de x à A et on note
d(x,A) le réel

d(x,A) = inf
a∈A

∥x− a∥.

1. Justifier que le réel d(x,A) est bien défini.

2. Montrer que la distance de x à A est nulle si, et seulement si, x est adhérent à A, i.e.

d(x,A) = 0 ⇐⇒ x ∈ A.

3. Soit (x, y) ∈ E2. Montrer que : ∀a ∈ A, d(x,A) ≤ ∥x− y∥+ ∥y − a∥. En déduire que :

|d(x,A)− d(y,A)| ≤ ∥x− y∥.

Qu’en déduire sur l’application x 7→ d(x,A) ?

4. Soit, pour tout n ∈ N∗, An =
{
x ∈ E | d(x,A) < 1

n

}
.

(a) Montrer que l’ensemble An est un ouvert de E et déterminer l’ensemble
⋂

n∈N∗

An.

(b) En déduire que tout fermé de E est une intersection dénombrable d’ouverts. Et que tout ouvert de
E est une réunion dénombrable de fermés.

5. On munit l’espace vectoriel E = C([0, 1],R) de la norme ∥.∥∞. Soit A l’ensemble des fonctions f de E
telles que :

f(0) = f(1) = 0 et

∫ 1

0

f(t)dt = 1.

(a) Montrer que l’ensemble A est un fermé de C([0, 1],R).
(b) Montrer que la distance de la fonction nulle à l’ensemble A est égale à 1 : d(0, A) = 1.

(c) Montrer qu’il n’existe pas de fonction f ∈ A telle que d(0, A) = ∥f − 0∥∞ (autrement dit : montrer
que cet inf n’est pas un min).

1. Soit un vecteur x ∈ E : l’ensemble {∥x− a∥, a ∈ A} est une partie minorée et non vide de R, elle admet donc une borne
inférieure inf

a∈A
∥x− a∥. Donc le réel d(x,A) est bien défini.

2. La borne inférieure d(x,A) est le plus grand des minorants, c’est donc :

— un minorant, i.e. ∀a ∈ A, d(x,A) ≤ ∥x− a∥ ;
— le plus grand, i.e. ∀ε > 0, ∃a ∈ A, ∥x− a∥ < d(x, a) + ε.

Par suite

d(x,A) = 0 ⇐⇒ ∀ε > 0, ∃a ∈ A, ∥x− a∥ < ε

⇐⇒ ∀ε > 0, ∃a ∈ A, a ∈ B(x, ε)

⇐⇒ ∀ε > 0, B(x, ε) ∩A ̸= ∅
⇐⇒ x ∈ A



3. Soit a ∈ A :

{
d(x,A) ≤ ∥x− a∥
∥x− a∥ ≤ ∥x− y∥+ ∥y − a∥ d’après l’inégalité triangulaire.

Donc ∀a ∈ A, d(x,A) ≤ ∥x− y∥+ ∥y − a∥ (♡).

On veut montrer que −∥x− y∥ ≤ d(x,A)− d(y,A) ≤ +∥x− y∥, c’est-à-dire que :

{
d(x,A)− d(y,A) ≤ ∥x− y∥ (1)

d(y,A)− d(x,A) ≤ ∥x− y∥ (2)

De (♡), on déduit que : ∀a ∈ A, d(x,A)−∥x−y∥ ≤ ∥y−a∥ et donc que le réel d(x,A)−∥x−y∥ est un minorant de l’ensemble
{∥y − a∥, a ∈ A}. Ce minorant est inférieur au plus grand des minorants, qui est d(y, A). Donc d(x,A)−∥x− y∥ ≤ d(y,A),
ce qui prouve l’inégalité (1). L’inégalité (2) est la même, après échange de x et de y.

L’inégalité |d(x,A)− d(y,A)| ≤ ∥x− y∥ a été prouvée pour tout (x, y) ∈ E2. On en déduit que l’application x 7→ d(x,A)
est 1−lipschitzienne et, par suite, qu’elle est continue.

4. (a) L’ensemble An =
{
x ∈ E | d(x,A) < 1

n

}
est l’image réciproque de l’intervalle ]−∞, 1

n
[ par la fonction f : E →

R, x 7→ d(x,A). Or ]−∞, 1
n
[ est un ouvert de R et l’application f est continue d’après la question précédente. Donc

An = f−1
(
]−∞, 1

n
[
)
est un ouvert de E.

Soit x ∈ E : x ∈
⋂

n∈N∗
An ⇐⇒ ∀n ∈ N∗, x ∈ An ⇐⇒ ∀n ∈ N∗, d(x,A) <

1

n
⇐⇒ d(x,A) = 0.

Or d(x,A) = 0 ⇐⇒ x ∈ A d’après la question 2. Donc
⋂

n∈N∗
An = A.

(b) Soit F un fermé de E. Alors F est égal à son adhérence F . Et on vient de montrer que F est l’intersection dénombrable
des ouverts Fn.

Si O est un ouvert de E, alors son complémentaire F = E \ O est un fermé. D’où F =
⋂

n∈N∗
Fn. Passons au

complémentaire : O =
⋃

n∈N∗
On, où chaque On est le complémentaire de l’ouvert Fn et est donc un fermé.

5. Les réponses à la question 5 sont manuscrites dans les pages suivantes.








