Chapitre XVIII Fonctions de deux variables

XVIII.1 COURBES DE NIVEAU

Une méme courbe peut étre définie de trois manieres : par une équation implicite, comme une courbe
paramétrée ou comme l'intersection de deux surfaces.

EXEMPLE 1 — Dans le plan R?, soit C le cercle de centre (0,0) et de rayon 1 :

xr = cost

(r,y) €C <= 22 +1y* =1 < FHecR, { _
y =sint

Plus généralement : soient deux réels a > 0 et b > 0. La courbe £ d’équation implicite

2 2
|
a b2

est appelée une ellipse. Elle est représentée sur la figure X VIII. 1 et c’est aussi une courbe paramétrée :

T =acost

(x,y) € & < TteR, {

y = bsint

5 -1k OJ +1 2

o4 34
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Ficure XVIII.1 — CERCLE & ELLIPSE

Preuve — L’ellipse £ et le cercle C sont liés par un changement de variables :

2 y2

X =
+L 21 = Xx2172=1, o { @/a

x
a?  b? Y =y/b

EXEMPLE 2 — Soient deux réels a > 0 et b > 0. La courbe H d’équation implicite

2 2
s
a b2
est appelée une hyperbole. Elle est représentée sur la figure X VIII. 2. Cette hyperbole est la réunion de
deuz branches : Hy = {(z,y) e H| x>0} et H_ = {(x,y) € H | x < 0}. La branche H est une courbe

paramétrée :
x=acht

,Y) €E H+ <— dJt e R,
() {ybsht
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L’hyperbole H possede deux asymptotes d’équations % . % ——
a a
N ] y
o]
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FiGure XVIII.2 - HYPERBOLES

Preuve — Pour tracer la figure, on utilise deuxr changements de variables :

2 2

LV 1 = X2oy?o, ou X =/
a2 b2 Y =y/b
— U-V=1, ot U=X+Y
V=X-Y

— v=21

U

1
L’hyperbole d’équation V = 7 posséde deuz asymptotes : Uaxe des U, d’équation V =0 et l’aze des V', d’équation U = 0.

Grace aux changements de variables, on trouve les équations des asymptotes de H :

T x
Vel V=X =2 et U=0  V=-X « 2=_Z
b a b a
Pour paramétrer la branche Hy, on utilise le cosinus hyperbolique et le sinus hyperbolique : pour chaque réel y, il existe
2
T T
t € R tel que % =sht car la fonction sh est surjective. Puis — = 14+ Z—2 =1+sh?t=ch?t. D'ow = = +cht. Or z est
. a 2 e a
positif sur la branche Hy. Donc — = cht. Réciproquement : si x = acht et y = bsht, alors P =1. O
a a

Une troisieme maniere de définir une courbe est 'intersection de deux surfaces :

FIGURE XVIIIL.3 — L’INTERSECTION D’UN PARABOLOIDE ET D’UN PLAN (A GAUCHE), D’UNE SELLE DE
CHEVAL ET D’UN PLAN (A DROITE)
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EXEMPLE 3 — 1. Une droite est l'intersection de deuz plans.

2. Un cercle est l'intersection d’un paraboloide et d’un plan :

— 2 2
Pty =1 = {Z_f ty
A

8. Une hyperbole est l’intersection d'une selle de cheval et d’un plan :

_ 2,2
N
z=1

Une fonction f de deux variables associe a chaque point (z,y) un nombre réel f(z,y). Par exemple : si
f mesure la température ou la pression, alors f(xz,y) sera la température ou la pression au point (z,y).

EXERCICE 4 — Soit f(z,y) = In(y — 22) + /= — y2. Hachurer dans le plan R? ’ensemble de définition D
de cette fonction f.

DEFINITION 5
Soient D C R? une partie du planet f : D — R, (z,y) ~ f(z,y) une fonction définie sur D. Pour chaque
réel K, la courbe de niveau K de la fonction f est I'ensemble des points (z,y) € D tels que

flz,y) = K.
EXEMPLE 6 — 1. Le cercle C de rayon 1 et de centre (0,0) est la courbe de niveau 1 de la fonction
f:R2 =R, (z,y) — 22 +y>. Si on change le niveau, alors le rayon du cercle change (figure

Xl'//l.U :
flz,y) =K — 2 +yP =K

est ’équation du cercle de rayon v K si K > 0, l’ensemble vide si K < 0. Changer le niveau K
équivaut aussi o changer la hauteur du plan d’équation z = K dans la figure X VIII.5.

2. L’hyperbole d’équation x® —y* =1 est la courbe de niveau 1 de la fonction R? — R, (x,y) — 2% —y>.
En changeant le niveau K, on change la hauteur du plan d’équation z = K dans la figure X VIII.5 et
on obtient d’autres hyperboles représentées sur la figure X VIII.J.

1‘2 _y2 =K
K € [-2,+2]

FIGURE XVIII.4 — COURBES DE NIVEAUX
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XVIII.2 OUVERTS

Pour étudier les variations d’une fonction f de deux variables, on se déplace dans le plan. D’apres la
définition 5, si on se déplace le long d’une courbe de niveau, alors la fonction ne varie pas. Par exemple :
si f mesure la température ou la pression, alors la courbe de niveau sera une isotherme ou une isobare.

Fronts ot iscbares pour le 03/04/2008 00hUTC (ressau: 31/03/2006 00hUTC)

FI1GURE XVIIL5 — Courbes de niveaux : de la pression (& gauche) & de Daltitude (& droite)

Pour comparer les valeurs f(a,b) et f(a+ h,b+ k), on se déplace du point (a,b) au point (a + h,b+ k).
Le vecteur (h, k) est le déplacement et la variation de f est f(a+ h,b+ k) — f(a,b). Pour savoir si f
varie beaucoup ou peu, on utilise la valeur absolue |f(a + h,b+ k) — f(a,b)|. Pour savoir si on se déplace
beaucoup ou peu, on utilise la norme du vecteur (h, k) :

(R, B)| = V1 + k2.

Dans R, soient deux nombres x et a. Pour dire que le nombre z tend vers le nombre a, on utilise la
valeur absolue :

r—a << r—a—0 < |z—a|] =0

Dans le plan R?, soient deux points (z,y) et (a,b). Pour dire que le point (x,y) tend vers le point
(a,b), on utilise la norme :

(z,9) = (a,b) <= (z—a,y—b) = (0,0) <= |(z—a,y—Db)|| =0 <= /(z—a)2+ (y—b)2— 0.

DEFINITION 7
Soient 7 > 0 un réel strictement positif, (a,b) € R? un point du plan et A C R? une partie du plan.

1. On appelle boule de centre (a,b) et de rayon 7, et on note B((a,b),r), la partie de R? définie par
(.’L‘,y) € B(<a’ab>7r) — ||<.’II —a,y— b)” <7
2. On dit que A est un ouvert ou une partie ouverte de R? si

Y(a,b) € A, Ir >0, B((a,b),r) C A.
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FIGuRE XVIIIL.6 — La boule unité & un ouvert A DE R2

XVIII.3 CONTINUITE

DEFINITION 8
Soient D C R? un ouvert du planet f : D — R, (z,y) — f(z,y) une fonction définie sur D.

1. Soit (a,b) € D. On dit que f est continue en (a,b) si f(z,y) ( ﬁ ) f(a,b), autrement dit :
z,y)—(a,

Ve>0, Ir>0V(z,y) €D, [(@-ay-b)|<r = |f(z,y)-fla,d) <e

2. On dit que f est continue sur D si f est continue en tout point de D.

REMARQUE 9 — 1. f est continue en (a,b) si, et seulement si, f(a+ h,b+ k) " k)—ZO 0 f(a,b).
k)= (0,

2. Une somme, un produit, un quotient (si le dénominateur ne s’annule pas) de fonctions continues est
encore une fonction continue.

EXERCICE 10 Soient f et g les fonctions définies sur R? \ {(0,0)} par

zy z® —y?

Va0 T ey

et a Uorigine par £(0,0) = 0 = g(0,0). Sont-elles continues sur R? ¢

f(Tvy) =

XVIII.4 DERIVEES PARTIELLES

DEFINITION 11
Soient D un ouvert de R? et une fonction f : D — R, (z,y) — f(x,y). Soit un point (a,b) € D.
1. Si Wb .
llmf(a+ a)ff(aa)
h—0 h

existe et est finie, alors ce nombre réel est noté 9; f(a, b) ou %(a, b) et est appelé la dérivée partielle
de f en (a,b) par rapport a la premiére variable.

2. Si
lim f(CLb—l—k) _f(a7b)
k—0 k

existe et est finie, alors ce nombre réel est noté ds f(a,b) ou g—g(a, b) et est appelé la dérivée partielle
de f en (a,b) par rapport a la deuxiéme variable.

3. Soit i € [1,2]. Si 9;f(a,b) existe pour tout (a,b) € D, alors la fonction 9;f : D — R est appelée la
dérivée partielle de f par rapport a la i—eéme variable.

4. On dit que la fonction f est de classe C! sur D si les 2 dérivées partielles 0, f et 05 f existent et sont
continues sur D.
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EXERCICE 12 — Soit la fonction f : R? — R définie par

Y

f(Ivy) = x2+y2

st (x,y) #(0,0) et f(0,0)=0.

Montrer que la fonction f posséde des dérivées partielles 01 f et Oof en tout point de R? mais que f n’est
pas continue en (0,0).

Cet exercice montre qu’une fonction de deux variables qui possede des dérivées partielles n’est pas
toujours continue. Tandis que, en dimension 1, une fonction dérivable est toujours continue.

XVIII.5 LA FORMULE DE TAYLOR & YOUNG

THEOREME 13 (Formule de Taylor & Young)
Soient D un ouvert de R et une fonction f : D — R. Si f est de classe C!, alors, pour tout (a,b) € D,

fla+h,b+k) = f(a,b) + hdrf(a,b) + kD2 f(a,b) + [|(h, k)||e(h, k)

ou e(h, k)

—
(h,k)—(0,0)

Preuve —

fla+h,b+k)— f(a,b) = fla+hb+k)— fla,b+k)
+ f(a’b+k)_f(a’b)

On applique le théoréme des accroissements finis & chaque différence :

fla+h,b+k)— f(a,b) = hoif(a+01h,b+k)
+ kagf(a,b+92k),

oll f; et f2 appartiennent & ]0, 1[. Or chaque dérivée partielle est continue (car f est de classe C'), d’ou :

fla+h,b+k)— f(a,b) = h[d1f(a,b)+e1(h k)]
+ k [BQf(CL, b) + 52(h7 k)} 5

ol €1(h, k) et e2(h, k) tendent vers zéro quand (h, k) — (0,0).
D’olt f(a+ h) — f(a,b) = hd f(a,b) + kb2 f(a,b) + he1(h, k) + kea(h, k).
Or |he1(h, k) + kea(h, k)| < |he1(h, k)| + |kea(h, k)| < VRZ + k2 - (|e1(h, k)| + |e2(h, k)]). O

—0 ((h,k)—(0,0))

COROLLAIRE 14
Toute fonction de classe C! est continue.

Preuve — f(a+ h,b+ k) — f(a,b) = hd1f(a,b) + kD2 f(a,b) + ||(h, k)|le(h, k) — 0. |
(h,k)—(0,0)

XVIII.6 LE GRADIENT

La formule de Taylor & Young est un développement limité (D.L.) de la fonction f, & 'ordre 1, au
voisinage de (a,b) :

— le reste ||(h, k)|le(h, k) de ce D.L. est négligeable devant ||(h, k)| et est noté o(h, k) ;



XVIIL.6. LE GRADIENT

— la partie réguliere de ce D.L. est le produit scalaire
half(avb) + k82f<a’v b) = (h7 k) ' (81f<a'a b)aan(a7b>)

de deux vecteurs. Le premier vecteur (h, k) est le déplacement, il ne dépend pas de la fonction f. Le

second vecteur (81 f(a,b),02f(a, b)) ne dépend pas du déplacement mais dépend de la fonction f et
du point (a,b) : on le note

Vf(aa b) = (alf(a? b)7 an(av b))
ou ?f(a,b) ou gradf(a,b) ou gl“—auglf(a7 b) et on I'appelle le gradient de f en (a,b).

FIGURE XVIIL.7 — LE CHAMP DES GRADIENTS DE In(z? + y?)

EXEMPLE 15 — La fonction f définie par f(z,y) = In(z? + y?) est de classe C* sur R*\ {(0,0)} et
2x 2y
v = — —
($7y)¢(0?0)7 Vf(x,y) <x2+y27x2+y2>

La figure X VIIL.7 représente en chaque point (x,y) différent de 'origine ce vecteur gradient, qui dépend
de (z,y). On obtient ainsi un champ de vecteurs.

On se déplace dans le plan R?, le long d'une courbe paramétrée par M : t+— M(t) = (x(t),y(t)) et

on évalue, & chaque instant ¢, la valeur f (M (t)) = f (x(t),y(t)) prise par une fonction scalaire f en le
point M (¢).

LEMME 16 (régle de la chaine)

Soient deux fonctions f : D — R, (z,y) — f(z,y) définie sur un ouvert D de R? et M : [ — R? t+—
M(t) = ((z(t),y(t)) définie sur un intervalle I de R. Si M(I) C D et si les fonctions f et M sont de classe
C?, alors la fonction foM : I =R, t — f(x(t),y(t)) est de classe C* et, pour tout ¢ € I,

(f o M)'(t) = 2’ ()00 f (2(t), y(£)) + o' (1) 02 f (x(t), y()) = M'(t) - V.f (M(2))

est le produit scalaire du vecteur-vitesse M'(t) = (z/(t),y'(t)) et du gradient de f en M(t).

Preuve — Pour tout t € I,
z(t +u) = z(t) + uz’(t) + uer (u) et y(t +u) = y(t) + uy’ (t) + uea(u)
car « et y sont de classe C! sur I.
D’apres la formule de Taylor & Young, pour tout (a,b) € D,
fla+h,b+ k) = f(a,b) + ho1 f(a,b) + kd2f(a,b) + ||(h, k)| e(h, k)
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car f est de classe C! sur D.
Dot foM(t+u) = foM(t) + u[a/()df(x(t),y(t) +y (£)d2f(x(t), y(t))] + ues(w).

foM(t+wu)— foM()

Par suite

— @ (001 F(@(1), y(H) + o/ (DD (2(0),y(0).
Donc f o M est dérivable. Et cette dérivée est continue car les fonctions z’, y’, 01 f et 92 f sont continues.

Enfin, on peut réécrire (f o M)’(t) comme un produit scalaire :

(foM)'(t) = («'(t),y/ (1)) - (O1f (x(t),y()), 02 f (x(t), y(1))) -

On en déduit que : (f o M)'(t) = 0 si, et seulement si, le vecteur vitesse est orthogonal au gradient.

En particulier, si la fonction f est constante le long de la trajectoire du point M (¢), alors le gradient
de f est orthogonal au vecteur vitesse en chaque point de la trajectoire. Or le vecteur vitesse est tangent
a la trajectoire. Donc le gradient de f est orthogonal a la courbe de niveau de f.

y/\

grad f{a,b)

S
Cd
X

F1GURE XVIII.8 — COURBES DE NIVEAUX K > L > M ET GRADIENT D’UNE FONCTION f

Le gradient de f est orienté dans le sens des f croissants.

EXERCICE 17 — Déterminer une équation de la droite tangente & Uhyperbole d’équation x? — y?> =1 au

point (v/2,1).

XVIII.7 CHANGER DE COORDONNEES

Soient  : D — R, (u,v) — 2(u,v) et y : D — R, (u,v) > y(u,v) deux fonctions de classe C! sur un
ouvert D de R%. Soit M : D — R?, (u,v) — (z(u,v),y(u,v)).

EXEMPLE 18 (les coordonnées polaires) — La fonction
M : RL xR —R2 (r,9) = (2,y) = (rcos p,rsin )

change les coordonnées polaires (r,p) en coordonnées cartésiennes (x,y). Les fonctions x et y sont de
classe C' sur louvert U = R% x R et leurs dérivées partielles sont :

Gr(r,p) = cose 22(r, ) = —rsing
o . o
e (r, ) =sing g5 (r.p) = +rcosy
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Soit une fonction f : R? = R, (x,y) + f(x,y) de classe C'. La fonction g définie par

V(’U,M)) €D, g(”?”) = f(x(u7v)7y(uvv))

s’écrit aussi g = f o M. Elle est de classe C' sur D et ses dérivées partielles sont :

00 _ ox0f | ouof
Ou ~ Ou Oz du Oy
99 _ 02 0f | 0y 0f
Ov — Ov Oz Ov Oy

Preuve — On applique la régle de la chaine (lemme 16) aux deux fonctions
u g(u,v) = f(M(u,v)) et v g(u,v) = f(M(u,v)).
O

EXEMPLE 19 (le gradient en coordonnées polaires) — Soit une fonction f : R2 - R, (z,y) — f(x,y) de
classe C*. La fonction g définie par

Vr >0, Vo eR, g(r,¢) = f(rcose,rsingp)

s’écrit aussi g = fo M. D’ou

9, 9 : 9 0, 9, inp 9

% (1, ) = cos B (z,) + sin L (z,1) e | @) = cos 9B 0) — 22021, )
. 15) of of . 19} cos p O

g—g(r, @) = —rsinpd(v,y) + rcoswa—}y‘(ac,y) a—i(x,y) =sinpgl(r,p) + L 5L(r, ¢

On en déduit le gradient en coordonnées polaires :

—

7 L. 10
VIy) = 5 ne) 6t 5 (r0) E.

XVIII.8 LES EXTREMA LOCAUX VOIRE GLOBAUX

DEFINITION 20
Soient une partie D C R?, un point (a,b) € D et une fonction f : D — R, (z,y) — f(z,y). On dit que la
fonction f possede :

1. un minimum global en (a,b) si  V(z,y) € D, f(z,y) > f(a,b));

2. un minimum local en (a,b) si 3 >0, V(z,y) € D, |[(x —a,y—=0d)|| <e = f(z,y) > f(a,b).

On définit de méme un maximum local voire global en (a,b). On dit que f posséde un extremum
(local voire global) en (a,b) si f posséde un maximum ou un minimum (local voire global) en (a,b). Un
extremum global est a fortiori local.

PROPOSITION 21 (Une condition nécessaire d’extremum local sur un ouvert)
Soient un ouvert D C R?, un point (a,b) € D et une fonction f : D — R, (z,y) — f(z,y) de classe C*.

Si f possede un extremum local en (a,b), alors V f(a,b) = (0,0).

Preuve — Soient les fonctions

fi:t—= f(,b) et f2 it f(a,t).
L’ensemble D est un ouvert, d’ott il existe € > 0 tel que la fonction f1 est définie sur Ja; — €,a1 + ¢[C R. La fonction f; est
dérivable en a (car f est de classe C1) et elle posséde un extremum local en a, donc sa dérivée est nulle en a : f](a) = 0. Or
fi(a) = 01 f(a,b). De méme avec la fonction fo. O

Si le gradient de la fonction f est nul en un point (a,b), alors on dit que (a,b) est un point critique de
la fonction f. D’aprés la proposition 21,

f posséde un extremum local en un point (a,b) d’'un ouvert = (a, b) est un point critique de f.
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EXEMPLE 22 — Soient D = {(x,y) € R? | 22 + y? < 1}. La fonction
f:D =R, (z,y)—2* —y°

est de classe C' sur la boule unité B((0,0),1), qui est un ouvert de R? inclus dans D. Son gradient en
chaque point (a,b) € B((0,0),1) est Vf(a,b) = (2a,—2b). Son unique point critique est donc (0,0) mais il
n’y a pas d’extremum local en ce point car Ve >0, f(g,0) =% > f(0,0) et f(0,e) = — < £(0,0).
Par contre, il existe :
— un mazimum global, égal & 1, qui est atteint en (—1,0) et en (4+1,0) car
F(-1,0) = F(+1,0) = 1 et ¥(z,y) € B0,1), f(z,9) <1;
— un minimum global, égal d -1, qui est atteint en (0,—1) et en (0,+1) car
> —

f(0,—1) = £(0,+1) = —1 et Y(x,y) € B(0,1), f(z,y) > —1.

10
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