
Chapitre XVIII Fonctions de deux variables

XVIII.1 Courbes de niveau

Une même courbe peut être définie de trois manières : par une équation implicite, comme une courbe
paramétrée ou comme l’intersection de deux surfaces.

Exemple 1 — Dans le plan R2, soit C le cercle de centre (0, 0) et de rayon 1 :

(x, y) ∈ C ⇐⇒ x2 + y2 = 1 ⇐⇒ ∃t ∈ R,

{
x = cos t

y = sin t
.

Plus généralement : soient deux réels a > 0 et b > 0. La courbe E d’équation implicite

x2

a2
+

y2

b2
= 1

est appelée une ellipse. Elle est représentée sur la figure XVIII.1 et c’est aussi une courbe paramétrée :

(x, y) ∈ E ⇐⇒ ∃t ∈ R,

{
x = a cos t

y = b sin t
.

X2 + Y 2 = 1
x2

a2
+

y2

b2
= 1

Figure XVIII.1 – Cercle & ellipse

Preuve — L’ellipse E et le cercle C sont liés par un changement de variables :

x2

a2
+

y2

b2
= 1 ⇐⇒ X2 + Y 2 = 1, où

{
X = x/a

Y = y/b
.

Exemple 2 — Soient deux réels a > 0 et b > 0. La courbe H d’équation implicite

x2

a2
− y2

b2
= 1

est appelée une hyperbole. Elle est représentée sur la figure XVIII.2. Cette hyperbole est la réunion de
deux branches : H+ = {(x, y) ∈ H | x ≥ 0} et H− = {(x, y) ∈ H | x ≤ 0} . La branche H+ est une courbe
paramétrée :

(x, y) ∈ H+ ⇐⇒ ∃t ∈ R,

{
x = a ch t

y = b sh t
.
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CHAPITRE XVIII. FONCTIONS DE DEUX VARIABLES

L’hyperbole H possède deux asymptotes d’équations
y

b
=

x

a
et

y

b
= −x

a
.

V =
1

U
X2 − Y 2 = 1

x2

a2
− y2

b2
= 1

Figure XVIII.2 – Hyperboles

Preuve — Pour tracer la figure, on utilise deux changements de variables :

x2

a2
−

y2

b2
= 1 ⇐⇒ X2 − Y 2 = 1, où

{
X = x/a

Y = y/b

⇐⇒ U · V = 1, où

{
U = X + Y

V = X − Y
.

⇐⇒ V =
1

U

L’hyperbole d’équation V =
1

U
possède deux asymptotes : l’axe des U , d’équation V = 0 et l’axe des V , d’équation U = 0.

Grâce aux changements de variables, on trouve les équations des asymptotes de H :

V = 0 ⇐⇒ Y = X ⇐⇒
y

b
=

x

a
et U = 0 ⇐⇒ Y = −X ⇐⇒

y

b
= −

x

a
.

Pour paramétrer la branche H+, on utilise le cosinus hyperbolique et le sinus hyperbolique : pour chaque réel y, il existe

t ∈ R tel que
y

b
= sh t car la fonction sh est surjective. Puis

x2

a2
= 1 +

y2

b2
= 1 + sh2 t = ch2 t. D’où

x

a
= ± ch t. Or x est

positif sur la branche H+. Donc
x

a
= ch t. Réciproquement : si x = a ch t et y = b sh t, alors

x2

a2
−

y2

b2
= 1.

Une troisième manière de définir une courbe est l’intersection de deux surfaces :

Figure XVIII.3 – L’intersection d’un parabolöıde et d’un plan (à gauche), d’une selle de
cheval et d’un plan (à droite)

2



XVIII.1. COURBES DE NIVEAU

Exemple 3 — 1. Une droite est l’intersection de deux plans.

2. Un cercle est l’intersection d’un parabolöıde et d’un plan :

x2 + y2 = 1 ⇐⇒

{
z = x2 + y2

z = 1
.

3. Une hyperbole est l’intersection d’une selle de cheval et d’un plan :

x2 − y2 = 1 ⇐⇒

{
z = x2 − y2

z = 1
.

Une fonction f de deux variables associe à chaque point (x, y) un nombre réel f(x, y). Par exemple : si
f mesure la température ou la pression, alors f(x, y) sera la température ou la pression au point (x, y).

Exercice 4 — Soit f(x, y) = ln(y − x2) +
√
x− y2. Hachurer dans le plan R2 l’ensemble de définition D

de cette fonction f .

Définition 5
Soient D ⊂ R2 une partie du plan et f : D → R, (x, y) 7→ f(x, y) une fonction définie sur D. Pour chaque
réel K, la courbe de niveau K de la fonction f est l’ensemble des points (x, y) ∈ D tels que

f(x, y) = K.

Exemple 6 — 1. Le cercle C de rayon 1 et de centre (0,0) est la courbe de niveau 1 de la fonction
f : R2 → R, (x, y) 7→ x2 + y2. Si on change le niveau, alors le rayon du cercle change (figure
XVIII.4) :

f(x, y) = K ⇐⇒ x2 + y2 = K

est l’équation du cercle de rayon
√
K si K ≥ 0, l’ensemble vide si K < 0. Changer le niveau K

équivaut aussi à changer la hauteur du plan d’équation z = K dans la figure XVIII.3.

2. L’hyperbole d’équation x2−y2 = 1 est la courbe de niveau 1 de la fonction R2 → R, (x, y) 7→ x2−y2.
En changeant le niveau K, on change la hauteur du plan d’équation z = K dans la figure XVIII.3 et
on obtient d’autres hyperboles représentées sur la figure XVIII.4.

x2 + y2 = K x2 − y2 = K
K ∈ J1, 5K K ∈ J−2,+2K

Figure XVIII.4 – Courbes de niveaux
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CHAPITRE XVIII. FONCTIONS DE DEUX VARIABLES

XVIII.2 Ouverts

Pour étudier les variations d’une fonction f de deux variables, on se déplace dans le plan. D’après la
définition 5, si on se déplace le long d’une courbe de niveau, alors la fonction ne varie pas. Par exemple :
si f mesure la température ou la pression, alors la courbe de niveau sera une isotherme ou une isobare.

Figure XVIII.5 – Courbes de niveaux : de la pression (à gauche) & de l’altitude (à droite)

Pour comparer les valeurs f(a, b) et f(a+ h, b+ k), on se déplace du point (a, b) au point (a+ h, b+ k).
Le vecteur (h, k) est le déplacement et la variation de f est f(a + h, b + k) − f(a, b). Pour savoir si f
varie beaucoup ou peu, on utilise la valeur absolue |f(a+ h, b+ k)− f(a, b)|. Pour savoir si on se déplace
beaucoup ou peu, on utilise la norme du vecteur (h, k) :

∥(h, k)∥ =
√

h2 + k2.

Dans R, soient deux nombres x et a. Pour dire que le nombre x tend vers le nombre a, on utilise la
valeur absolue :

x → a ⇐⇒ x− a → 0 ⇐⇒ |x− a| → 0.

Dans le plan R2, soient deux points (x, y) et (a, b). Pour dire que le point (x, y) tend vers le point
(a, b), on utilise la norme :

(x, y) → (a, b) ⇐⇒ (x− a, y − b) → (0, 0) ⇐⇒ ∥(x− a, y − b)∥ → 0 ⇐⇒
√
(x− a)2 + (y − b)2 → 0.

Définition 7
Soient r > 0 un réel strictement positif, (a, b) ∈ R2 un point du plan et A ⊂ R2 une partie du plan.

1. On appelle boule de centre (a, b) et de rayon r, et on note B((a, b), r), la partie de R2 définie par

(x, y) ∈ B((a, b), r) ⇐⇒ ∥(x− a, y − b)∥ < r.

2. On dit que A est un ouvert ou une partie ouverte de R2 si

∀(a, b) ∈ A, ∃r > 0, B((a, b), r) ⊂ A.
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XVIII.3. CONTINUITÉ

1

A
b

(a, b)
r

Figure XVIII.6 – La boule unité & un ouvert A de R2

XVIII.3 Continuité

Définition 8
Soient D ⊂ R2 un ouvert du plan et f : D → R, (x, y) 7→ f(x, y) une fonction définie sur D.

1. Soit (a, b) ∈ D. On dit que f est continue en (a, b) si f(x, y) −→
(x,y)→(a,b)

f(a, b), autrement dit :

∀ε > 0, ∃r > 0, ∀(x, y) ∈ D, ∥(x− a, y − b)∥ < r =⇒ |f(x, y)− f(a, b)| < ε.

2. On dit que f est continue sur D si f est continue en tout point de D.

Remarque 9 — 1. f est continue en (a, b) si, et seulement si, f(a+ h, b+ k) −→
(h,k)→(0,0)

f(a, b).

2. Une somme, un produit, un quotient (si le dénominateur ne s’annule pas) de fonctions continues est
encore une fonction continue.

Exercice 10 — Soient f et g les fonctions définies sur R2 \ {(0, 0)} par

f(x, y) =
xy√

x2 + 2y2
, g(x, y) =

x2 − y2

x2 + y2

et à l’origine par f(0, 0) = 0 = g(0, 0). Sont-elles continues sur R2 ?

XVIII.4 Dérivées partielles

Définition 11
Soient D un ouvert de R2 et une fonction f : D → R, (x, y) 7→ f(x, y). Soit un point (a, b) ∈ D.

1. Si

lim
h→0

f(a+ h, b)− f(a, b)

h

existe et est finie, alors ce nombre réel est noté ∂1f(a, b) ou
∂f
∂x (a, b) et est appelé la dérivée partielle

de f en (a, b) par rapport à la première variable.

2. Si

lim
k→0

f(a, b+ k)− f(a, b)

k

existe et est finie, alors ce nombre réel est noté ∂2f(a, b) ou
∂f
∂y (a, b) et est appelé la dérivée partielle

de f en (a, b) par rapport à la deuxième variable.

3. Soit i ∈ J1, 2K. Si ∂if(a, b) existe pour tout (a, b) ∈ D, alors la fonction ∂if : D → R est appelée la
dérivée partielle de f par rapport à la i−ème variable.

4. On dit que la fonction f est de classe C1 sur D si les 2 dérivées partielles ∂1f et ∂2f existent et sont
continues sur D.
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CHAPITRE XVIII. FONCTIONS DE DEUX VARIABLES

Exercice 12 — Soit la fonction f : R2 → R définie par

f(x, y) =
xy

x2 + y2
si (x, y) ̸= (0, 0) et f(0, 0) = 0.

Montrer que la fonction f possède des dérivées partielles ∂1f et ∂2f en tout point de R2 mais que f n’est
pas continue en (0, 0).

Cet exercice montre qu’une fonction de deux variables qui possède des dérivées partielles n’est pas
toujours continue. Tandis que, en dimension 1, une fonction dérivable est toujours continue.

XVIII.5 La formule de Taylor & Young

Théorème 13 (Formule de Taylor & Young)
Soient D un ouvert de R et une fonction f : D → R. Si f est de classe C1, alors, pour tout (a, b) ∈ D,

f(a+ h, b+ k) = f(a, b) + h∂1f(a, b) + k∂2f(a, b) + ∥(h, k)∥ε(h, k)

où ε(h, k) −→
(h,k)→(0,0)

0.

Preuve —

f(a+ h, b+ k)− f(a, b) = f(a+ h, b+ k)− f(a, b+ k)

+ f(a, b+ k)− f(a, b).

On applique le théorème des accroissements finis à chaque différence :

f(a+ h, b+ k)− f(a, b) = h∂1f(a+ θ1h, b+ k)

+ k∂2f(a, b+ θ2k),

où θ1 et θ2 appartiennent à ]0, 1[. Or chaque dérivée partielle est continue (car f est de classe C1), d’où :

f(a+ h, b+ k)− f(a, b) = h [∂1f(a, b) + ε1(h, k)]

+ k [∂2f(a, b) + ε2(h, k)] ,

où ε1(h, k) et ε2(h, k) tendent vers zéro quand (h, k) → (0, 0).

D’où f(a+ h)− f(a, b) = h∂1f(a, b) + k∂2f(a, b) + hε1(h, k) + kε2(h, k).

Or |hε1(h, k) + kε2(h, k)| ≤ |hε1(h, k)|+ |kε2(h, k)| ≤
√
h2 + k2 ·

(
|ε1(h, k)|+ |ε2(h, k)|

)︸ ︷︷ ︸
−→0 ((h,k)→(0,0))

.

Corollaire 14
Toute fonction de classe C1 est continue.

Preuve — f(a+ h, b+ k)− f(a, b) = h∂1f(a, b) + k∂2f(a, b) + ∥(h, k)∥ε(h, k) −→
(h,k)→(0,0)

0.

XVIII.6 Le gradient

La formule de Taylor & Young est un développement limité (D.L.) de la fonction f , à l’ordre 1, au
voisinage de (a, b) :

— le reste ∥(h, k)∥ε(h, k) de ce D.L. est négligeable devant ∥(h, k)∥ et est noté o(h, k) ;
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XVIII.6. LE GRADIENT

— la partie régulière de ce D.L. est le produit scalaire

h∂1f(a, b) + k∂2f(a, b) = (h, k) · (∂1f(a, b), ∂2f(a, b))

de deux vecteurs. Le premier vecteur (h, k) est le déplacement, il ne dépend pas de la fonction f . Le
second vecteur

(
∂1f(a, b), ∂2f(a, b)

)
ne dépend pas du déplacement mais dépend de la fonction f et

du point (a, b) : on le note
∇f(a, b) = (∂1f(a, b), ∂2f(a, b))

ou
−→
∇f(a, b) ou gradf(a, b) ou

−−→
gradf(a, b) et on l’appelle le gradient de f en (a, b).

Figure XVIII.7 – Le champ des gradients de ln(x2 + y2)

Exemple 15 — La fonction f définie par f(x, y) = ln(x2 + y2) est de classe C1 sur R2 \ {(0, 0)} et

∀(x, y) ̸= (0, 0), ∇f(x, y) =

(
2x

x2 + y2
,

2y

x2 + y2

)
La figure XVIII.7 représente en chaque point (x, y) différent de l’origine ce vecteur gradient, qui dépend
de (x, y). On obtient ainsi un champ de vecteurs.

On se déplace dans le plan R2, le long d’une courbe paramétrée par M : t 7→ M(t) = (x(t), y(t)) et
on évalue, à chaque instant t, la valeur f (M(t)) = f (x(t), y(t)) prise par une fonction scalaire f en le
point M(t).

Lemme 16 (règle de la châıne)
Soient deux fonctions f : D → R, (x, y) 7→ f(x, y) définie sur un ouvert D de R2 et M : I → R2, t 7→
M(t) = ((x(t), y(t)) définie sur un intervalle I de R. Si M(I) ⊂ D et si les fonctions f et M sont de classe
C1, alors la fonction f ◦M : I → R, t 7→ f

(
x(t), y(t)

)
est de classe C1 et, pour tout t ∈ I,

(f ◦M)′(t) = x′(t)∂1f(x(t), y(t)) + y′(t)∂2f(x(t), y(t)) = M ′(t) · ∇f (M(t))

est le produit scalaire du vecteur-vitesse M ′(t) = (x′(t), y′(t)) et du gradient de f en M(t).

Preuve — Pour tout t ∈ I,

x(t+ u) = x(t) + ux′(t) + uε1(u) et y(t+ u) = y(t) + uy′(t) + uε2(u)

car x et y sont de classe C1 sur I.

D’après la formule de Taylor & Young, pour tout (a, b) ∈ D,

f(a+ h, b+ k) = f(a, b) + h∂1f(a, b) + k∂2f(a, b) + ∥(h, k)∥ε(h, k)
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CHAPITRE XVIII. FONCTIONS DE DEUX VARIABLES

car f est de classe C1 sur D.

D’où f ◦M(t+ u) = f ◦M(t) + u
[
x′(t)∂1f(x(t), y(t)) + y′(t)∂2f(x(t), y(t))

]
+ uε3(u).

Par suite
f ◦M(t+ u)− f ◦M(t)

u
−→
u→0

x′(t)∂1f(x(t), y(t)) + y′(t)∂2f(x(t), y(t)).

Donc f ◦M est dérivable. Et cette dérivée est continue car les fonctions x′, y′, ∂1f et ∂2f sont continues.

Enfin, on peut réécrire (f ◦M)′(t) comme un produit scalaire :

(f ◦M)′(t) =
(
x′(t), y′(t)

)
· (∂1f(x(t), y(t)), ∂2f(x(t), y(t))) .

On en déduit que : (f ◦M)′(t) = 0 si, et seulement si, le vecteur vitesse est orthogonal au gradient.

En particulier, si la fonction f est constante le long de la trajectoire du point M(t), alors le gradient
de f est orthogonal au vecteur vitesse en chaque point de la trajectoire. Or le vecteur vitesse est tangent
à la trajectoire. Donc le gradient de f est orthogonal à la courbe de niveau de f .

x

y

(a,b)

C

K
L

M

grad f(a,b)

C
C

Figure XVIII.8 – Courbes de niveaux K > L > M et gradient d’une fonction f

Le gradient de f est orienté dans le sens des f croissants.

Exercice 17 — Déterminer une équation de la droite tangente à l’hyperbole d’équation x2 − y2 = 1 au
point (

√
2, 1).

XVIII.7 Changer de coordonnées

Soient x : D → R, (u, v) 7→ x(u, v) et y : D → R, (u, v) 7→ y(u, v) deux fonctions de classe C1 sur un
ouvert D de R2. Soit M : D → R2, (u, v) 7→ (x(u, v), y(u, v)) .

Exemple 18 (les coordonnées polaires) — La fonction

M : R∗
+ × R → R2, (r, φ) 7→ (x, y) = (r cosφ, r sinφ)

change les coordonnées polaires (r, φ) en coordonnées cartésiennes (x, y). Les fonctions x et y sont de
classe C1 sur l’ouvert U = R∗

+ × R et leurs dérivées partielles sont :

∂x
∂r (r, φ) = cosφ ∂x

∂φ (r, φ) = −r sinφ
∂y
∂r (r, φ) = sinφ ∂y

∂φ (r, φ) = +r cosφ
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XVIII.8. LES EXTREMA LOCAUX VOIRE GLOBAUX

Soit une fonction f : R2 → R, (x, y) 7→ f(x, y) de classe C1. La fonction g définie par

∀(u, v) ∈ D, g(u, v) = f(x(u, v), y(u, v))

s’écrit aussi g = f ◦M . Elle est de classe C1 sur D et ses dérivées partielles sont :
∂g
∂u = ∂x

∂u
∂f
∂x + ∂y

∂u
∂f
∂y

∂g
∂v = ∂x

∂v
∂f
∂x + ∂y

∂v
∂f
∂y

.

Preuve — On applique la règle de la châıne (lemme 16) aux deux fonctions

u 7→ g(u, v) = f(M(u, v)) et v 7→ g(u, v) = f(M(u, v)).

Exemple 19 (le gradient en coordonnées polaires) — Soit une fonction f : R2 → R, (x, y) 7→ f(x, y) de
classe C1. La fonction g définie par

∀r > 0, ∀φ ∈ R, g(r, φ) = f(r cosφ, r sinφ)

s’écrit aussi g = f ◦M . D’où{
∂g
∂r (r, φ) = cosφ∂f

∂x (x, y) + sinφ∂f
∂y (x, y)

∂G
∂φ (r, φ) = −r sinφ∂f

∂x (x, y) + r cosφ∂f
∂y (x, y)

donc

{
∂f
∂x (x, y) = cosφ∂g

∂r (r, φ)−
sinφ
r

∂g
∂φ (r, φ)

∂f
∂y (x, y) = sinφ∂g

∂r (r, φ) +
cosφ
r

∂g
∂φ (r, φ)

.

On en déduit le gradient en coordonnées polaires :

∇f(x, y) =
∂g

∂r
(r, φ) e⃗r +

1

r

∂g

∂φ
(r, φ) e⃗φ.

XVIII.8 Les extrema locaux voire globaux

Définition 20
Soient une partie D ⊂ R2, un point (a, b) ∈ D et une fonction f : D → R, (x, y) 7→ f(x, y). On dit que la
fonction f possède :

1. un minimum global en (a, b) si ∀(x, y) ∈ D, f(x, y) ≥ f(a, b)) ;

2. un minimum local en (a, b) si ∃ε > 0, ∀(x, y) ∈ D, ∥(x− a, y − b)∥ ≤ ε =⇒ f(x, y) ≥ f(a, b).

On définit de même un maximum local voire global en (a, b). On dit que f possède un extremum
(local voire global) en (a, b) si f possède un maximum ou un minimum (local voire global) en (a, b). Un
extremum global est a fortiori local.

Proposition 21 (Une condition nécessaire d’extremum local sur un ouvert)
Soient un ouvert D ⊂ R2, un point (a, b) ∈ D et une fonction f : D → R, (x, y) 7→ f(x, y) de classe C1.

Si f possède un extremum local en (a, b), alors ∇f(a, b) = (0, 0).

Preuve — Soient les fonctions
f1 : t 7→ f(t, b) et f2 : t 7→ f(a, t).

L’ensemble D est un ouvert, d’où il existe ε > 0 tel que la fonction f1 est définie sur ]a1 − ε, a1 + ε[⊂ R. La fonction f1 est

dérivable en a (car f est de classe C1) et elle possède un extremum local en a, donc sa dérivée est nulle en a : f ′
1(a) = 0. Or

f ′
1(a) = ∂1f(a, b). De même avec la fonction f2.

Si le gradient de la fonction f est nul en un point (a, b), alors on dit que (a, b) est un point critique de
la fonction f . D’après la proposition 21,

f possède un extremum local en un point (a, b) d’un ouvert =⇒
⇍=

(a, b) est un point critique de f.

9



CHAPITRE XVIII. FONCTIONS DE DEUX VARIABLES

Exemple 22 — Soient D = {(x, y) ∈ R2 | x2 + y2 ≤ 1}. La fonction

f : D → R, (x, y) 7→ x2 − y2

est de classe C1 sur la boule unité B((0, 0), 1), qui est un ouvert de R2 inclus dans D. Son gradient en
chaque point (a, b) ∈ B((0, 0), 1) est ∇f(a, b) = (2a,−2b). Son unique point critique est donc (0, 0) mais il
n’y a pas d’extremum local en ce point car ∀ε > 0, f(ε, 0) = ε2 > f(0, 0) et f(0, ε) = −ε < f(0, 0).

Par contre, il existe :

— un maximum global, égal à 1, qui est atteint en (−1, 0) et en (+1, 0) car

f(−1, 0) = f(+1, 0) = 1 et ∀(x, y) ∈ B̄(0, 1), f(x, y) ≤ 1 ;

— un minimum global, égal à -1, qui est atteint en (0,−1) et en (0,+1) car

f(0,−1) = f(0,+1) = −1 et ∀(x, y) ∈ B̄(0, 1), f(x, y) ≥ −1.
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