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CORRIGE DU D.S. N° 6 DE MATHEMATIQUES

EXERCICE (MPI)

1) Déterminer le rayon de convergence R de la série entiere > y/na".

Soit, pour tout = €] — R, +R|, Z Vnz™.

3) Déterminer la nature des séries Y (v/n—+v/n—1) et 3 (vn — v/n—1) (=1)". En déduire le rayon de

2) Pour tout z € [0, 1], comparer g(z) et % En déduire lir? g(x).

convergence de la série entiere (f —Vn— 1) x™.
Soit, pour tout z €] — 1,+1], f(z) = Z (Vn—+vn—1)z"
n=1

4) Pour tout x €] — 1, +1[, comparer f(z) et (1 — z)g(z). En déduire que g(x) possede une limite finie
quand x tend vers —17%.

1) Soient x # 0 et n € N* : alors |\/nz™| > 0 et

NATRS LA BN ||
[Vrzn]  notes

i 1
cc.)nverge‘51 2l < d’apres le critere de D’Alembert.
diverge si |z| > 1

d’ot1 la série > [v/nz"| {

Donc le rayon de convergence de la série entiere > /nz™ est égal a 1.
2) Pour tout n € N*, \/n > 1. Donc pour tout z € [0, 1],

x +oo +o0
=y a" <> Vna"
-z n=1 n=1

Or lim

r—1—

3) La suite (v/n —+/n — 1) tend vers 0 en décroissant. En effet :

125 = +oo. Donc lim g(z) =
z—1

— d’une part, la fonction h : x — /r — v/z — 1 est dérivable sur |1,4o0[ et h'(z) = % < 0 pour tout

€]1, +oo[. D’out h est décroissante sur |1, +oo[. En particulier h(n + 1) < h(n) pour tout n € N*.
— d’autre part, la limite de (y/n —v/n —1) est O car y/n —v/n—1= m



D’apres le théoréme des séries alternées, la série > (f —vn— 1) (—1)™ est donc convergente. Par contre la série n’est
pas absolument convergente car (\f —vn— 1) ~ ﬁ, qui ne change pas de signe, et la série > ﬁ diverge d’apres le

critere de Riemann avec o = % < 1.

La série > (v/n — v/n — 1)z™ converge si x = —1 d’olt son rayon de convergence est supérieur ou égal & 1. Elle diverge si
z = +1 d’ou son rayon de convergence est inférieur ou égal & 1. Donc son rayon de convergence est égal & 1.
Soit x €] — 1, 1[. Toutes le séries & suivre convergent, d’ot :

oo —+o0
(1-2)g(z) = 3 vaa"— Y vme"t!
n=1 n=1
“+oo +oo
= Z Vnz™ — Z Vn —1z"
n=1 n=2

+oo +o0o
= Z\/EZ‘"— Z\/n—lac"

n=1

oo
= Z(\f— vn —1)z"

n=1

PREMIERE METHODE — On utilise le théoréme radial d’Abel. Le rayon de convergence de la série entiere > (v/n —+v/n — 1)z™
est 1 et la série numérique Y (v/n —+/n — 1)(—1)" converge. Donc, d’aprés le théoréme radial d’Abel,

(A —a)g(z) — > (V- Vn=D(=D)"
T n=1

Done g(a) = —=— - (1= )g(s) — Z VA==,

SECONDE METHODE — On utilise les théorémes des séries alternées et de la double limite. Soit = €] — 1,0] : on peut appliquer
le théoréme des séries alternées a la série numérique > (y/n — /n — 1)z™. Cette série converge et son reste Ry () vérifie :

[Rn(2) < (Vn+1—Vn)lz["* < v+ 1-vn

qui est un majorant. Or le sup est le plus petit majorant, d’'ot 0 < sup |Rn(z)|<Vn+1-vn.Orvn+1—yn — 0.
z€]—1,0] n—oo
D’ott supgej—1,0) [Rn(2)| — 0. D’olt la suite des fonctions (Ry) converge uniformément sur | — 1,0] vers la fonction nulle.
’ n— 00

De plus (v/n —+v/n—1)z™ . (v/m —+/n—1)(—1)™ qui est une limite finie, donc on peut intervertir somme et limite :
T

lim (1 —2)g(@) = S (Vi - V)"

n=1

Doncg() Z(\f*\/ﬂf)( n".

1+2



EXERCICE (MPI*), ©iré pe X-ENS Marn PSI 2014

Soit E = C(]0, 1], R) ’ensemble des fonctions continues du segment [0, 1] vers R. On note T' ’endomorphisme
défini sur E par :

Vf e B, Ve 0,1, T(f)(z) = of (g) .

1) Les normes || - ||oo €t || - ||2 définies ci-dessous sont-elles équivalentes ?

2) Déterminer Ker(T).

3) Soit g € Im(T"). Déterminer g(0) et montrer que g est dérivable en 0. Déterminer Im(7T).

4) On munit E de la norme ||.||« définie par :

VfEE, [floc= sup [f(z)].
z€(0,1]

Montrer que I'application T est continue et déterminer || .

5) On munit E de la norme ||.||2 définie par :
1
VECE Ifla=y [ 7@ d
0

Montrer que : Vf € E, |T(f)|l2 < V2| fl|2-

6) On pose, pour chaque n > 2, la fonction f,, affine par morceaux définie par :
1 1 1 1 1
0) = - ——)= -+ —)= 1)=0 et -)=1
1a0) = a3 = ) = fuly + ) = (1) ()
1 1 5 3 2
n+1 10n° +4n° + 10n°+4 _,
En admettant que (fn(2))? do = —5 et que (T(f)(x)) da = 5 , déter-
3n 0 15n

miner ||72.

1) On pose, pour chaque n € N* : Vz € [0,1], fn(xz) = ™. Ces fonctions f, sont bien des éléments de E et ||fn|l2 =
fn(®)]2dt = t2n dt = et || £, = sup |fn(t)]= sup t" = 1. Par’absurde : supposons qu'il existe une

VIl @)2de =/ [y Zrr et e = sup 1a(0] = sup

constante o telle que Vf € E, ||fllco < a-||f|l2. En particulier, Vn € N*, || fnlloc < a-||fn]l2. Dot Vn € N*, 1 < a- TH’

C’est absurde car \/ﬁ — 0, donc les normes || - ||2 et || - [[oo ne sont pas équivalentes.

2) Soit f € Ker(T'). Alors Vx € [0,1], xf(z/2) = 0 et f est donc nulle sur ]0,1/2]. Par continuité, elle ’est aussi sur [0,1/2].
Réciproquement, toute fonction continue sur [0, 1] et nulle sur [0,1/2] appartient au noyau de T'. Ainsi

Ker(T) = {f € B | vz € [0,1/2), f(z) = 0}

3) Soit g € Im(T"). Il existe une fonction continue f telle que Va € [0, 1], g(x) = xf(x/2). Ainsi, g(0) = 0 et M
f(z/2) — f(0) quand = — 0, ce qui montre que g est dérivable en 0. L’image de T est donc incluse dans Pensemble des
éléments de E s’annulant en 0 et dérivables en 0.

Réciproquement, supposons g € E nulle en 0 et dérivable en 0. Soit alors f la fonction définie sur [0, 1] par

o . Q(Qx) _
f0)=g'(0) et Vae€]0,1/2], flz) == et Vx €]1/2,1], f(z)=g(1).
x
Elle est continue et Vz €]0, 1], zf(z/2) = g(z). Cette égalité reste vraie en 0 par continuité des fonctions dans les deux
membres. Ainsi f € E et T(f) = g, ce qui montre que g € Im(T"). Donc
Im(T) ={g € E| g(0) =0 et g dérivable en 0}
4) L’application T est linéaire et elle est continue car 1—lipschitzienne. En effet, pour tout f € E :

Va € [0,1], [T(f)(@)] < [f(z/2)] < [[fllee
qui est un majorant. Or le sup est le plus petit majorant, d’olt || T(f)]lcc <1 X || f]loo-

De plus, 1 est le plus petit facteur car la fonction f : z +— 1 appartient & E et T(f) : z — z, ol [|T(f)||cc = || f]|occ = 1.
Donc ||T]|eo = 1.



5) Soit f € E. Par le changement de variable u = x/2, qui est bien de classe C?! :

1/2 1/2

1 1 2 1
[rn@pd= [ of(5) do=s [ wPwduze [T P@de<2 [ If@) du.
0 0 2 0 0 0
Donc Vf € B, |T(f)|2 < V2|2
T
6) De la question précédente, on déduit que Vf € E, || T(f)|l2 < K||f]l2 si K = v/2. De lim T (Fn)ll2 = /2, on déduit que
n

=0 || full2
V2 est le plus petit de ces réels K. Donc |T]|2 = V2.



PROBLEME 1, TrE DE CENTRALE-SUPELEC MaTH 1 PC 2024

Une premiére approximation de v/2.

2n)!
1) Pour tout n € N, on pose b, = 2%(275_”)1)(7“)2 Mountrer que, pour tout z €] — 1, 1],

Vi+z= Z(—l)"+1bnx".
n=0

2) Montrer que la série > (—1)"*1b,, converge et déterminer sa somme Z(—l)”“bn.
n=0

3) Montrer que v2 = > (—=1)**1b + O (#) .

k=0 n—oo g

La suite de Héron d’Alexandrie.

4) Soit a € R;. Montrer que, si z > 0, alors 1 (z + %) > \/a.

5) On pose

cola)=1 et VYneN, cyyi(a) = % <Cn(a) L > .

Montrer que la suite (¢, (a))nen est bien définie.
6) Montrer que cette suite converge et déterminer sa limite.

7) Calculer ¢1(2) et montrer que, pour tout n € N*|

8) En déduire que

V=@ + O ((312>2> .

Cette approximation de v/2 est-elle plus ou moins précise que celle obtenue & la question 3 ?

Racines carrées d’une matrice.

Soit ¢ € N*. On dit qu'une matrice B € .#,(R) est une racine carrée d'une matrice A € .#,(R) si B> = A.

9) Montrer que la matrice I posséde une infinité de racines carrées.

10) La matrice —I5 possede-t-elle une racine carrée ?

11) Montrer qu'’il existe un polynéme R, € R[X] tel que X7 divise 1 + X — R, (X)2.

12) Soit N € .#,(R). Montrer que, si N est nilpotente, alors N9 = 0 et en déduire I'expression d’une racine
carrée de I, + N.



Racines carrées d’une matrice diagonalisable.
Soit une matrice A € .#,(R). On suppose qu'il existe une matrice P inversible telle que
: -1
A = P diag(A1,..., AP
et que les valeurs propres Aq, ..., Ay (non nécessairement distinctes deux a deux) sont positives.

13) On pose
1
My=1, et WENJ@H=§QQ+Amfy
Montrer, par récurrence sur n € N que, pour tout n € N, M,, est bien définie et que

M, = P diag(c, (A1), ..., cn(Ag)) P71

14) En déduire que la suite (M, ),en converge vers une racine carrée de A.

Racines carrées d’une matrice trigonalisable.

On suppose que la matrice M € .#,(R) est trigonalisable et que ses r valeurs propres pi1,- -, iy
(distinctes deux a deux et de multiplicités respectives my, - - ,m,) sont strictement positives.

15) Montrer qu’il existe deux matrices A et N telles que :

M=A+N,
A est diagonalisable et Sp(A) = Sp(M),
N est nilpotente et AN = NA.

(On rappelle que les sous-espaces caractéristiques d’une matrice trigonalisable sont supplémentaires.)
Montrer que la matrice A est inversible et que les matrices A~! et N commutent.

En déduire une racine carrée de la matrice I, + ATIN.

Montrer que la matrice A possede une racine carrée B qui commute avec A7'N.

En déduire une racine carrée de la matrice M.

1) Pour tout z €] —1,+1[, 1+ z)* =14 az+ ——=x =

zF _1
o1 . On pose a = 5. Pour

ala—1) 2 iaa—l) (a—k+1)

chaque n € N*,

Ij (1—2k) _ (nugli]igk_l)

(=yn*t (2n)!
nl2n  (2n —1)TI5_,(2k)
()™ ()l
nl2”  (2n —1)27(n!)
(2n)!
22n(2n — 1)(n!)?2

1
n!

= = (=)™ b

et bp = —1, d’ou (—1)%F1pg = +1.
2) D’apres la formule de Stirling,



10

11

12

= =

)

~

Donc )
(2n)! dmn (22)7" 11

e

by = ~ ot
" 22n(2n — 1)(n!)2 n—oo 227 (2n)27mn (%)271 n—oo 24/ 3

D’ou b, = O (%) et i+ ne change pas de signe et la série > L est convergente, d’oil la série >~ bn est convergente,
2 n?2 n2

3
N

o0
donc la série S(—1)"T1b, est absolument convergente. D’oti, d’aprés le théoreme d’Abel radial, 3 (=1)"*t1b,2” —

n=0 x—1—
(o)
Z (=1)"*1b,. Or V/T+z — /2. Par unicité de la limite, z (=1)"Hb, = V2.
n=0 z—1—
_1
La suite des réels by, tend vers 0 (d’apres 1'équivalent trouvé a la question 2) en décroissant car b, > 0 et "+1 = T:H_f <1

donc le théoreme des séries alternées permet de majorer la valeur absolue du reste :

n o0

1

V2= ST (DR = | ST (1R | < fbaga] = O (m> .
k=0 k=n+1

Soit @ > 0 et > 0 : alors 22 + a > 2v/ax car (x — /a)? > 0. D’ou, en divisant par 2z > 0 : % (= + %) > Va.

Par récurrence : initialement, le réel co(a) est bien défini et co(a) > 0 car co(a) = 1.

Si cn(a) est bien défini et c¢p(a) > 0, alors cn41(a) est bien défini et cp11(a) > %cn(a) > 0.

Donc la suite des réels cp(a) est bien définie.
Par récurrence, cn+1(a) > y/a pour tout n € N d’apres la question 1. La suite des réels cp(a) est donc minorée. Elle est

1
aussi décroissante & partir du rang 1 car ¢p41(a) — en(a) = ( cn(a) + on )) =3 @ (*Cn(a)2 +a) < 0. Elle est
a cn(a
donc convergente et sa limite £ est une solution de l’equatlon l= % ( %) d’ot £2 — a, donc £ € {—+/a, /a}. De plus
¢ > y/a car l'inégalité large cn(a) > \/a passe & la limite. Donc £ = \/a.
01(2):%doncc1(2) —2=3 8( )1.
12!
Supposons ¢ (2)? —2 < 8 (3—2) . Alors

1 2 1 1\
cnt1(2)? -2 = 1on(2)2 (en(2)?—2)" < Ton@? [8 (§> }

car ¢, (2)2 > 2 d’apres la question 4.
271,—1

1
On en déduit par récurrence que, pour tout n € N*| cn(2)2 —-2<8 (5)

n-1 n-1
‘\/57071(2)):%<%(%)2 est donc un ngm ((%)2 )

n—1
1 2

1
Par croissances comparées, | — = o0 ——= |, donc la derniére approximation est meilleure que celle obtenue a
32 n—oo n3/ 2

la question 3.
cos 0 sin 0

Pour tout réel 6, la matrice | .
sinf —cosf

) est une racine carrée de la matrice Io.

cosm/4 —sinm/4
sinw/4  cosw/4

En reprenant les notations de la question 1, le développement limité en 0 de  — /1 + x & l'ordre ¢ — 1 est :

La matrice ( ) est une racine carrée de —Is.

q—1
Vitz=>> (-1)""bpa”™ +0(297") = Ry(x) + o(x?~")
n=0

q—1
en posant le polynéme Ry (X) = Z(—l)"*lan".

n=0

Dot l+z=yIita = Rq(z)% 4+ o(z77 1), donc 1 + & — Rg(x)? = o(x2~1). Par conséquent, le monéme de plus petit
degré dans le polynéme 1+ X — Ry(X)? est nul ou de degré supérieur a g, donc X? divise 1 + X — Rq(X)2.

Soit une matrice N nilpotente. Il existe alors p € N* tel que NP = 0 et NP~! # 0. Par suite il existe X € .#1(K) tel
que NP~1X 0. On montre alors que la famille (X, NX,---, NP~1X) de p vecteurs colonnes est libre. D’otl p < ¢ car la
dimension de .#41(K) vaut g. Or N? = 0. Dot N2 = NP .N?TP=0-N7"P =0.



13)

14)

15)

16)

17)

18)

19)

En reprenant le polynéme R4 de la question précédente, il existe un polynéme Q(X) tel que :
I+ N — Rg(N)2 = NIQ(N)=0 donc Rq(N)2=1I,+N

Donc Rq(N) est une racine carrée de I + N.
Montrons par récurrence que, pour tout n € N, la matrice M,, est bien définie et M,, = P diag(cn()\l)7 R cn()\q))P’l.

Initialement, Mo = I, est bien définie et Vi, co(X;) = 1.

Supposons que la matrice My, est bien définie et que M, = Pdiag (cn(A1), -+ ,cn(Ag)) P71
D’apres la question 5, cn(A;) > 0 pour chaque i € [1,¢q], d’ou det(My) = 3:1 cn(Ai) > 0, par conséquent M, est

inversible et la matrice M1 = % (Mn + AM51> est bien définie.

De plus, Myl = P diag (ﬁ, ,ﬁ) P~1 dou :
= (g
AM;! = Pdiag (A1, --- ,A\y) P~ P diag (L ! )P’l
n ’ » g T’ Cn()\1)7 7Cn()\q)
—+tq
A A
:pdiag(il7...’ a ) -1
Cn()\l) Cn(Aq)
D’ou,
1 B 1 A1 A _
Mpi1 == (Mn+AM7Y) = ZP |di n(A1), -, en( di P )]Pl
o1 = g (M AMT) = 2P g (en (), o) + ding (s
. 1 Al 1 A1 1
=Pd ~ (en(A o= en(n P
lag(z (C ( 1)+cn(A1)) 2 (C (ot 0 )

= Pdiag (cnt1(M1), -+, ent1(Ag)) P71,

ce qui acheve la récurrence.
Pour tout ¢ € [1,q], Um cn(N;) = /A d’apres la question 6. L’espace vectoriel Mg (R) étant de dimension finie, la suite
n—oo

des matrice suivante converge car chacune de ses coordonnées converge :
lim_diag (en(M),+ ,en(Ag)) = diag (\KI o \/E>
Enfin Papplication ¢ : M +— PM P~ est linéaire sur 'ev Mgq(R) qui est de dimension finie d’olt ¢ est continue donc :
nleoo (Pdiag (cn(M), - sen(Ag)) P71) = nlem p (diag (cn (A1), - ,en(Ag)))
= ¢ [ lim_diag (ca(M), -+ ,en(A))]
— Pdiag (\/I , \/E) p1

Donc la suite des matrices M, tend vers une racine carrée B = P diag (\/H, ceey \/E) P~1 de la matrice A.

Parce que les r sous-espaces caractéristiques de la matrice M sont supplémentaires, la matrice M est semblable a
une matrice diagonale par blocs diag(Bi,-- -, Br) > exercice 39 du chapitre IV, autrement dit 3Q € GL4(R), M =
Qdiag(Bi,- -+, Br)Q~!. Et dans les r blocs By, = trIm,, + Ng, les réels py sont les valeurs propres de M distinctes deux
& deux, de multiplicité my, et les blocs Ny sont nilpotents. Les matrices diagonale diag(p1lm, -+, brIm,.) et nilpotente
diag(N1,-- -, Nyr) commutent car chaque bloc Nj, commute avec i Im,, .

Posons A = Qdiag(p1lmy,  * , irlm,)Q~ ' et N = Qdiag(N1,---,N,)Q~ 1. Alors M = A+ N, A est diagonalisable,
Sp(A) = Sp(M), N est nilpotente et AN = NA.

Par hypothese, les valeurs propres de M, et donc de A, sont strictement positives. La matrice A est donc inversible car 0
n’est pas une valeur propre.

N=A"1AN = A-1NA car AN = NA. En multipliant & droite par A~1, il vient : NA~=1 = A—1N.
La matrice A1 N est nilpotente car A™! et N commutent. D’aprés la question 12, la matrice Rq(A~1N) est une racine
carrée de la matrice Iy + A7 N.
Avec les notations de la question 15, posons B = Qdiag(y/t1lmy,- - ,\/;TTImT)Q_l. Cette matrice :

— est bien définie car les valeurs propres u; de A sont positives (en effet Sp(M) = Sp(A) et les valeurs propres de M

sont strictement positives par hypothese) ;

— est une racine carrée de la matrice A ;

— commute avec A = Qdiag(p1lmy, - , pirIm,. ) Q7! et N = Qdiag(Ny,--- , N,;)Q ™1, donc aussi avec A7LN.
La matrice BRq(A™!N) est une racine carrée de la matrice M = A(Ig + A™'N) car (BRg(A7IN))? = B2(Rq(A~1N))2
car les matrices B et AN commutent. Or B2 = A et (Rq(A™IN))?2 =1, + A~!N.



PROBLEME 2, TIRE DE CCP MaTH PC 2015

Soient (2, <7, P) un espace probabilisé et, pour chaque n € N*, une variable aléatoire S,, qui suit une loi

de Poisson de parametre n : S,(2) =Net P(X =k) = e’”% pour tout entier k € N.

1) Soit,

a)
b)

2) a)
b)
c)
3) a)

et
n!

vVt e Ry,

Soit n € N*. Dresser le tableau des variations de la fonction f,.

pour tout n € N*, la fonction f, définie sur R, par : falt) =
Déterminer un équivalent de f,,(n) quand n tend vers oc.

Rappeler l'espérance E(S,,) et la variance de la variable aléatoire S,, et déterminer celles de la

variable aléatoire S} S—\/%"

k n+1

Soit n € N*. Calculer la somme Z(n - k)e*”% et en déduire que : E(|S,, —n|) = 92¢~" "
k=0 '

n!
Etudier lim E (|S%]).

n— oo
Rappeler 'hypothese et 'expression du reste R, (a,b) de la formule de Taylor avec reste intégral

(b—a)

ORS ,; f¥a) =+ Ra(a,b)

pour une fonction f sur un intervalle [a, b].
Montrer que, pour tout n € N*

nn+1
(n+ 1)

d) En déduire que la suite (P(S} < 0))nen- converge.

4) Pour tout n € N*, on note Gg, la fonction génératrice de la variable aléatoire S,,.
a) Montrer que la fonction Gg, est définie sur R et calculer Gg, (t) pour tout ¢t € R.
b) En déduire que, pour tout ¢ > 0, la variable aléatoire t5» admet une espérance et que :

_ Gg, (tV/V™)

E(t5) = R

¢) Etudier, pour tout ¢ € R%, lim E(t%).
n—oo

7ttn71
1) a) Pour chaque n € N*, f,, est dérivable sur RT et, pour tout ¢t > 0, f5(t) = ¢ ' (n—1t).
n!
t 0 n +o00
fr(t) + 0 — 0
e "n"
faln) =
n!
fa(t) / pY
0 0
b) Grace a la formule de Stirling, fn(n) ~ ——— """ et, en simplifiant, fu(n) !
race a la formule de Stirling, fn(n) ~ —=——— et, en simplifiant, fr(n) ~
& Jn V2mnnte—"m p " n— oo 2m™n



2) a) E(Sn) =V (Sn) = n. Par linéarité de l'espérance, E(S}) = M\/ﬁ)_n =0. Et V(S}) = ViSn) =,

V2
nk
b) On calcule la somme K = Z(n —k)e ™ o grace a un télescope :
k=0 :
n k n k—1
n n
K=ne " (Z — = Z > ne " —
o K '
(|Sn—n|)—Z|k—n|e_" => (n '+ > (k—n)e"k =K+1L,
k=0 k=0 k! k=n+1
Or L - K=EFE(S,—n)=0,dou K =L, donc

n+1
E(|Sn — nl) =2K =2 "
n!

c) E(|SE]) = ﬁEﬂSn —n|) = 2y/nfn(n) e 1/% d’aprés la question 1b. Donc nlewE(|SZ|) =+/2/7.

3) a) Si f est une fonction de classe €11 sur le segment [a, b], alors la formule de Taylor est vérifiée avec Ry (a,b) =

a n!

n
b) Soit n € N* : (S} <0) = (Sn, <n) U = k) et cette union est disjointe, d’ott P(S; < 0) = P(Sp, < n) =
k

=0
ZP(Snfk) donc : P(S, < 0) = e~ Z%

On applique la formule de Taylor avec reste intégral & la fonction f = exp qui est de classe C*t1 sur [a,b] = [0, n]. Pour

n k n (n _ t)n n en—uyn
tout k € N, f(¥) = f et f(0) =1 donc e" = Z — 4+ Rp(0,n), ot Rp(0,n) = el dt = ——du
k=0 k! 0 n! 0 n!
(par le changement de variable u = n — t qui est bien de classe €'!).
n nk n e—tyn
On multiplie égalité obtenue par e™™ : 1 =™ " Z — 4+ / dt. D’ou
k! 0
n tn
P(S:<0)=1 7/ e t—dt.
0 n!
c) Par suite :
n+1 . ¢n+1 n ttn
P(S; <0)—P(S;i1 <0 = / e_idt—/ e ' —dt
(n_) (n+l_) o (TL+) nl
tn+1 n+1 7tn+1 n tn
= / - dt+/ - dtf/ e t—dt.
0 n -+ 1)' (n + 1) 0 n!
tn+1
Dans la premiére intégrale, on pose u(t) = m et v(t) = —e~*t. Les fonctions u et v sont de classe € et
n !
t'n.
u/(t) = — v'(t) = e~t. D’ol, en intégrant par parties :
n!
. n+1 . tn+1 nn+1
P(S;, <0)— P(S;, <0:/ et ——dt—e " ——.
(n_ ) (n+1_ ) n (TLJrl)' (TLJrl)'
n+1
d) P(S;, <0)—P(S;,11 <0)= Fr41(®)dt — fr+1(n) et la fonction fr41 est croissante sur [n;n+1] d’apres la ques-
n
tion la. Donc, pour tout t € [n;n+1], fnt1(t) > fat1(n) et, en intégrant sur [n; n+1] : P(S; < 0)—P(Sy; ., <0) > 0.

La suite (P(S} < 0))pen+ est donc décroissante. Par ailleurs, elle est minorée par 0 (car toute probabilité est
positive), donc elle converge.

5 (nt)k
k!

oo
converge et sa somme vaut Z ( ) ="t Dol Gg,, (t) = Z e~
k=0 k=0

4) a) Soient n € N* et t € R : la série )

(nt)*
k!
est défini et vaut

GSTL (t) _ en(t—l)

oo
b) Soit t € R** et n € N* : Gg, (t) = »_ P(Sn = k)t* = E(t°") d’apres le théoréme de transfert.
k=0



Or t5n = (t1/V7)Sn—n = (£1/Vn)Sn % {=V7™ Dol par linéarité de I'espérance, t5n admet une espérance et

«  Gg, (tV/V"
E(tsn) — Sn( ) .
tvn
o exp (n(tl/\/H — 1))
D’apres les d ti écédentes, E(t°n) = .
¢) D’apres les zux questions précédentes, E(t°n) G ]
u _ u- 2 N N g1 /Vm <L >_ h’lit (lnt) l
et = 1+u+t 5 +u?e(u), ou e(u) tend vers 0 quand u tend vers 0. Dot ¢ =exp (5 Int) =1+ VAT En,
. - 1y (Int)? g+ (Int)2
ott &y, tend vers 0 quand n tend vers co. D’ott n(t1/V7*—1) = /nlnt+ 5 +éen. Donc E(t°n) = exp — +enl-
. iz . . . S* (ll’l t)2
Par continuité de la fonction exponentielle, lim E(¢t°») =exp [ ——— ).
n—oo 2



