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Exercice (MPI)

1) Déterminer le rayon de convergence R de la série entière
∑√

nxn.

Soit, pour tout x ∈]−R,+R[, g(x) =

∞∑
n=1

√
nxn.

2) Pour tout x ∈ [0, 1[, comparer g(x) et
x

1− x
. En déduire lim

x→1−
g(x).

3) Déterminer la nature des séries
∑(√

n−
√
n− 1

)
et
∑(√

n−
√
n− 1

)
(−1)n. En déduire le rayon de

convergence de la série entière
∑(√

n−
√
n− 1

)
xn.

Soit, pour tout x ∈]− 1,+1[, f(x) =

∞∑
n=1

(√
n−

√
n− 1

)
xn.

4) Pour tout x ∈] − 1,+1[, comparer f(x) et (1 − x)g(x). En déduire que g(x) possède une limite finie
quand x tend vers −1+.

1) Soient x ̸= 0 et n ∈ N∗ : alors |
√
nxn| > 0 et

|
√
n+ 1xn+1|
|
√
nxn|

−→
n→+∞

|x|,

d’où la série
∑

|
√
nxn|

{
converge si |x| < 1

diverge si |x| > 1
d’après le critère de D’Alembert.

Donc le rayon de convergence de la série entière
∑√

nxn est égal à 1.

2) Pour tout n ∈ N∗,
√
n ≥ 1. Donc pour tout x ∈ [0, 1[,

x

1− x
=

+∞∑
n=1

xn ≤
+∞∑
n=1

√
nxn

Or lim
x→1−

x
1−x

= +∞. Donc lim
x→1−

g(x) = +∞.

3) La suite (
√
n−

√
n− 1) tend vers 0 en décroissant. En effet :

— d’une part, la fonction h : x 7→
√
x −

√
x− 1 est dérivable sur ]1,+∞[ et h′(x) =

√
x−1−

√
x

2
√
x
√
x−1

≤ 0 pour tout

x ∈]1,+∞[. D’où h est décroissante sur ]1,+∞[. En particulier h(n+ 1) ≤ h(n) pour tout n ∈ N∗.

— d’autre part, la limite de (
√
n−

√
n− 1) est 0 car

√
n−

√
n− 1 = 1√

n+
√
n−1

.



D’après le théorème des séries alternées, la série
∑(√

n−
√
n− 1

)
(−1)n est donc convergente. Par contre la série n’est

pas absolument convergente car
(√

n−
√
n− 1

)
∼ 1

2
√
n
, qui ne change pas de signe, et la série

∑ 1√
n

diverge d’après le

critère de Riemann avec α = 1
2
< 1.

La série
∑

(
√
n−

√
n− 1)xn converge si x = −1 d’où son rayon de convergence est supérieur ou égal à 1. Elle diverge si

x = +1 d’où son rayon de convergence est inférieur ou égal à 1. Donc son rayon de convergence est égal à 1.

4) Soit x ∈]− 1, 1[. Toutes le séries à suivre convergent, d’où :

(1− x)g(x) =

+∞∑
n=1

√
nxn −

+∞∑
n=1

√
nxn+1

=

+∞∑
n=1

√
nxn −

+∞∑
n=2

√
n− 1xn

=

+∞∑
n=1

√
nxn −

+∞∑
n=1

√
n− 1xn

=

+∞∑
n=1

(
√
n−

√
n− 1)xn

Première méthode — On utilise le théorème radial d’Abel. Le rayon de convergence de la série entière
∑

(
√
n−

√
n− 1)xn

est 1 et la série numérique
∑

(
√
n−

√
n− 1)(−1)n converge. Donc, d’après le théorème radial d’Abel,

(1− x)g(x) −→
x→−1+

∞∑
n=1

(
√
n−

√
n− 1)(−1)n.

Donc g(x) =
1

1− x
· (1− x)g(x) −→

x→−1+

1

2
·

∞∑
n=1

(
√
n−

√
n− 1)(−1)n.

Seconde méthode — On utilise les théorèmes des séries alternées et de la double limite. Soit x ∈]− 1, 0] : on peut appliquer
le théorème des séries alternées à la série numérique

∑
(
√
n−

√
n− 1)xn. Cette série converge et son reste Rn(x) vérifie :

|Rn(x)| ≤ (
√
n+ 1−

√
n)|x|n+1 ≤

√
n+ 1−

√
n.

qui est un majorant. Or le sup est le plus petit majorant, d’où 0 ≤ sup
x∈]−1,0]

|Rn(x)| ≤
√
n+ 1−

√
n. Or

√
n+ 1−

√
n −→

n→∞
0.

D’où supx∈]−1,0] |Rn(x)| −→
n→∞

0. D’où la suite des fonctions (Rn) converge uniformément sur ]− 1, 0] vers la fonction nulle.

De plus (
√
n−

√
n− 1)xn −→

x→−1
(
√
n−

√
n− 1)(−1)n qui est une limite finie, donc on peut intervertir somme et limite :

lim
x→−1+

(1− x)g(x) =

∞∑
n=1

(
√
n−

√
n− 1)(−1)n.

Donc g(x) −→
x→−1+

1

2

∞∑
n=1

(
√
n−

√
n− 1)(−1)n.



Exercice (MPI*), tiré de X-ENS Math PSI 2014

Soit E = C([0, 1],R) l’ensemble des fonctions continues du segment [0, 1] vers R. On note T l’endomorphisme
défini sur E par :

∀f ∈ E, ∀x ∈ [0, 1], T (f)(x) = xf
(x
2

)
.

1) Les normes ∥ · ∥∞ et ∥ · ∥2 définies ci-dessous sont-elles équivalentes ?

2) Déterminer Ker(T ).

3) Soit g ∈ Im(T ). Déterminer g(0) et montrer que g est dérivable en 0. Déterminer Im(T ).

4) On munit E de la norme ∥.∥∞ définie par :

∀f ∈ E, ∥f∥∞ = sup
x∈[0,1]

|f(x)|.

Montrer que l’application T est continue et déterminer |||T |||∞.

5) On munit E de la norme ∥.∥2 définie par :

∀f ∈ E, ∥f∥2 =

√∫ 1

0

|f(x)|2 dx.

Montrer que : ∀f ∈ E, ∥T (f)∥2 ≤
√
2∥f∥2.

6) On pose, pour chaque n ≥ 2, la fonction fn affine par morceaux définie par :

fn(0) = fn(
1

2
− 1

n
) = fn(

1

2
+

1

n2
) = fn(1) = 0 et fn(

1

2
) = 1.

En admettant que

∫ 1

0

(fn(x))
2
dx =

n+ 1

3n2
et que

∫ 1

0

(T (fn)(x))
2
dx =

10n5 + 4n3 + 10n2 + 4

15n6
, déter-

miner |||T |||2.

1) On pose, pour chaque n ∈ N∗ : ∀x ∈ [0, 1], fn(x) = xn. Ces fonctions fn sont bien des éléments de E et ∥fn∥2 =√∫ 1
0 [fn(t)]2 dt =

√∫ 1
0 t2n dt = 1√

2n+1
et ∥fn∥∞ = sup

t∈[0,1]
|fn(t)| = sup

t∈[0,1]
tn = 1. Par l’absurde : supposons qu’il existe une

constante α telle que ∀f ∈ E, ∥f∥∞ ≤ α · ∥f∥2. En particulier, ∀n ∈ N∗, ∥fn∥∞ ≤ α · ∥fn∥2. D’où ∀n ∈ N∗, 1 ≤ α · 1√
2n+1

.

C’est absurde car 1√
2n+1

→ 0, donc les normes ∥ · ∥2 et ∥ · ∥∞ ne sont pas équivalentes.

2) Soit f ∈ Ker(T ). Alors ∀x ∈ [0, 1], xf(x/2) = 0 et f est donc nulle sur ]0, 1/2]. Par continuité, elle l’est aussi sur [0, 1/2].
Réciproquement, toute fonction continue sur [0, 1] et nulle sur [0, 1/2] appartient au noyau de T . Ainsi

Ker(T ) = {f ∈ E | ∀x ∈ [0, 1/2], f(x) = 0}

3) Soit g ∈ Im(T ). Il existe une fonction continue f telle que ∀x ∈ [0, 1], g(x) = xf(x/2). Ainsi, g(0) = 0 et
g(x)−g(0)

x
=

f(x/2) → f(0) quand x → 0, ce qui montre que g est dérivable en 0. L’image de T est donc incluse dans l’ensemble des
éléments de E s’annulant en 0 et dérivables en 0.
Réciproquement, supposons g ∈ E nulle en 0 et dérivable en 0. Soit alors f la fonction définie sur [0, 1] par

f(0) = g′(0) et ∀x ∈]0, 1/2], f(x) =
g(2x)

2x
et ∀x ∈]1/2, 1], f(x) = g(1).

Elle est continue et ∀x ∈]0, 1], xf(x/2) = g(x). Cette égalité reste vraie en 0 par continuité des fonctions dans les deux
membres. Ainsi f ∈ E et T (f) = g, ce qui montre que g ∈ Im(T ). Donc

Im(T ) = {g ∈ E | g(0) = 0 et g dérivable en 0}

4) L’application T est linéaire et elle est continue car 1−lipschitzienne. En effet, pour tout f ∈ E :

∀x ∈ [0, 1], |T (f)(x)| ≤ |f(x/2)| ≤ ∥f∥∞
qui est un majorant. Or le sup est le plus petit majorant, d’où ∥T (f)∥∞ ≤ 1× ∥f∥∞.

De plus, 1 est le plus petit facteur car la fonction f : x 7→ 1 appartient à E et T (f) : x 7→ x, d’où ∥T (f)∥∞ = ∥f∥∞ = 1.
Donc |||T |||∞ = 1.



5) Soit f ∈ E. Par le changement de variable u = x/2, qui est bien de classe C1 :∫ 1

0
|T (f)(x)|2 dx =

∫ 1

0
x2f

(x
2

)2
dx = 8

∫ 1/2

0
u2f2(u) du ≤ 2

∫ 1/2

0
f2(u) du ≤ 2

∫ 1

0
|f(u)|2 du.

Donc ∀f ∈ E, ∥T (f)∥2 ≤
√
2∥f∥2.

6) De la question précédente, on déduit que ∀f ∈ E, ∥T (f)∥2 ≤ K∥f∥2 si K =
√
2. De lim

n→∞

∥T (fn)∥2
∥fn∥2

=
√
2, on déduit que

√
2 est le plus petit de ces réels K. Donc |||T |||2 =

√
2.



Problème 1, tiré de Centrale-Supélec Math 1 PC 2024

Une première approximation de
√
2.

1) Pour tout n ∈ N, on pose bn =
(2n)!

22n(2n− 1)(n!)2
. Montrer que, pour tout x ∈]− 1, 1[,

√
1 + x =

∞∑
n=0

(−1)n+1bnx
n.

2) Montrer que la série
∑

(−1)n+1bn converge et déterminer sa somme

∞∑
n=0

(−1)n+1bn.

3) Montrer que
√
2 =

n∑
k=0

(−1)k+1bk + O
n→∞

(
1

n3/2

)
.

La suite de Héron d’Alexandrie.

4) Soit a ∈ R+. Montrer que, si x > 0, alors 1
2

(
x+ a

x

)
≥

√
a.

5) On pose

c0(a) = 1 et ∀n ∈ N, cn+1(a) =
1

2

(
cn(a) +

a

cn(a)

)
.

Montrer que la suite (cn(a))n∈N est bien définie.

6) Montrer que cette suite converge et déterminer sa limite.

7) Calculer c1(2) et montrer que, pour tout n ∈ N∗,

cn(2)
2 − 2 ⩽ 8

(
1

32

)2n−1

.

8) En déduire que

√
2 = cn(2) + O

n→∞

((
1

32

)2n−1)
.

Cette approximation de
√
2 est-elle plus ou moins précise que celle obtenue à la question 3 ?

Racines carrées d’une matrice.

Soit q ∈ N∗. On dit qu’une matrice B ∈ Mq(R) est une racine carrée d’une matrice A ∈ Mq(R) si B2 = A.

9) Montrer que la matrice I2 possède une infinité de racines carrées.

10) La matrice −I2 possède-t-elle une racine carrée ?

11) Montrer qu’il existe un polynôme Rq ∈ R[X] tel que Xq divise 1 +X −Rq(X)2.

12) Soit N ∈ Mq(R). Montrer que, si N est nilpotente, alors Nq = 0 et en déduire l’expression d’une racine
carrée de Iq +N .



Racines carrées d’une matrice diagonalisable.

Soit une matrice A ∈ Mq(R). On suppose qu’il existe une matrice P inversible telle que

A = P diag(λ1, . . . , λq)P
−1

et que les valeurs propres λ1, . . . , λq (non nécessairement distinctes deux à deux) sont positives.

13) On pose

M0 = Iq et ∀n ∈ N, Mn+1 =
1

2

(
Mn +AM−1

n

)
.

Montrer, par récurrence sur n ∈ N que, pour tout n ∈ N, Mn est bien définie et que

Mn = P diag
(
cn(λ1), . . . , cn(λq)

)
P−1.

14) En déduire que la suite (Mn)n∈N converge vers une racine carrée de A.

Racines carrées d’une matrice trigonalisable.

On suppose que la matrice M ∈ Mq(R) est trigonalisable et que ses r valeurs propres µ1, · · · , µr

(distinctes deux à deux et de multiplicités respectives m1, · · · ,mr) sont strictement positives.

15) Montrer qu’il existe deux matrices A et N telles que :

M = A+N,

A est diagonalisable et Sp(A) = Sp(M),

N est nilpotente et AN = NA.

(On rappelle que les sous-espaces caractéristiques d’une matrice trigonalisable sont supplémentaires.)

16) Montrer que la matrice A est inversible et que les matrices A−1 et N commutent.

17) En déduire une racine carrée de la matrice Iq +A−1N .

18) Montrer que la matrice A possède une racine carrée B qui commute avec A−1N .

19) En déduire une racine carrée de la matrice M .

1) Pour tout x ∈]− 1,+1[, (1 + x)α = 1+αx+
α(α− 1)

2!
x2 + · · · = 1+

∞∑
k=1

α(α− 1) . . . (α− k + 1)

k!
xk. On pose α = 1

2
. Pour

chaque n ∈ N∗,

1

n!

n−1∏
k=0

(
1− 2k

2

)
=

(−1)n

n!2n

n−1∏
k=0

(2k − 1)

=
(−1)n+1

n!2n
(2n)!

(2n− 1)
∏n

k=1(2k)

=
(−1)n+1

n!2n
(2n)!

(2n− 1)2n(n!)

= (−1)n+1 (2n)!

22n(2n− 1)(n!)2
= (−1)n+1bn

et b0 = −1, d’où (−1)0+1b0 = +1.

2) D’après la formule de Stirling,

n! ∼
n→∞

√
2πn

(n
e

)n
et (2n)! ∼

n→∞

√
4πn

(
2n

e

)2n



Donc

bn =
(2n)!

22n(2n− 1)(n!)2
∼

n→∞

√
4πn

(
2n
e

)2n
22n(2n)2πn

(
n
e

)2n ∼
n→∞

1

2
√
π

1

n
3
2

D’où bn = O

(
1

n
3
2

)
et 1

n
3
2

ne change pas de signe et la série
∑ 1

n
3
2

est convergente, d’où la série
∑

bn est convergente,

donc la série
∑

(−1)n+1bn est absolument convergente. D’où, d’après le théorème d’Abel radial,
∞∑

n=0
(−1)n+1bnxn −→

x→1−
∞∑

n=0
(−1)n+1bn. Or

√
1 + x −→

x→1−

√
2. Par unicité de la limite,

∞∑
n=0

(−1)n+1bn =
√
2.

3) La suite des réels bn tend vers 0 (d’après l’équivalent trouvé à la question 2) en décroissant car bn > 0 et
bn+1

bn
=

n− 1
2

n+1
≤ 1

donc le théorème des séries alternées permet de majorer la valeur absolue du reste :∣∣∣∣∣√2−
n∑

k=0

(−1)k+1bk

∣∣∣∣∣ =
∣∣∣∣∣∣

∞∑
k=n+1

(−1)k+1bk

∣∣∣∣∣∣ ≤ |bn+1| = O

(
1

n3/2

)
.

4) Soit a ≥ 0 et x > 0 : alors x2 + a ≥ 2
√
ax car (x−

√
a)2 ≥ 0. D’où, en divisant par 2x > 0 : 1

2

(
x+ a

x

)
≥

√
a.

5) Par récurrence : initialement, le réel c0(a) est bien défini et c0(a) > 0 car c0(a) = 1.

Si cn(a) est bien défini et cn(a) > 0, alors cn+1(a) est bien défini et cn+1(a) ≥ 1
2
cn(a) > 0.

Donc la suite des réels cn(a) est bien définie.

6) Par récurrence, cn+1(a) ≥
√
a pour tout n ∈ N d’après la question 4. La suite des réels cn(a) est donc minorée. Elle est

aussi décroissante à partir du rang 1 car cn+1(a)− cn(a) =
1

2

(
−cn(a) +

a

cn(a)

)
=

1

2cn(a)

(
−cn(a)

2 + a
)
≤ 0. Elle est

donc convergente et sa limite ℓ est une solution de l’équation ℓ = 1
2

(
ℓ+ a

ℓ

)
, d’où ℓ2 − a, donc ℓ ∈ {−

√
a,

√
a}. De plus

ℓ ≥
√
a car l’inégalité large cn(a) ≥

√
a passe à la limite. Donc ℓ =

√
a.

7) c1(2) =
3
2
donc c1(2)2 − 2 = 1

4
= 8

(
1
32

)1
.

Supposons cn(2)
2 − 2 ≤ 8

(
1

32

)2n−1

. Alors

cn+1(2)
2 − 2 =

1

4cn(2)2

(
cn(2)

2 − 2
)2 ≤

1

4cn(2)2

[
8

(
1

32

)2n−1]2
≤ 8

(
1

32

)2n

car cn(2)2 ≥ 2 d’après la question 4.

On en déduit par récurrence que, pour tout n ∈ N∗, cn(2)
2 − 2 ≤ 8

(
1

32

)2n−1

.

8)
∣∣∣√2− cn(2)

∣∣∣ = cn(2)2−2

cn(2)+
√
2
≤ 8

2
√
2

(
1
32

)2n−1

est donc un O
n→∞

((
1
32

)2n−1
)
.

Par croissances comparées,

(
1

32

)2n−1

= o
n→∞

(
1

n3/2

)
, donc la dernière approximation est meilleure que celle obtenue à

la question 3.

9) Pour tout réel θ, la matrice

(
cos θ sin θ
sin θ − cos θ

)
est une racine carrée de la matrice I2.

10) La matrice

(
cosπ/4 − sinπ/4
sinπ/4 cosπ/4

)
est une racine carrée de −I2.

11) En reprenant les notations de la question 1, le développement limité en 0 de x 7→
√
1 + x à l’ordre q − 1 est :

√
1 + x =

q−1∑
n=0

(−1)n+1bnx
n + o(xq−1) = Rq(x) + o(xq−1)

en posant le polynôme Rq(X) =

q−1∑
n=0

(−1)n+1bnX
n.

D’où 1 + x =
√
1 + x

2
= Rq(x)2 + o(xq−1), donc 1 + x− Rq(x)2 = o(xq−1). Par conséquent, le monôme de plus petit

degré dans le polynôme 1 +X −Rq(X)2 est nul ou de degré supérieur à q, donc Xq divise 1 +X −Rq(X)2.

12) Soit une matrice N nilpotente. Il existe alors p ∈ N∗ tel que Np = 0 et Np−1 ̸= 0. Par suite il existe X ∈ Mp1(K) tel
que Np−1X ̸= 0. On montre alors que la famille (X,NX, · · · , Np−1X) de p vecteurs colonnes est libre. D’où p ≤ q car la
dimension de Mq1(K) vaut q. Or Np = 0. D’où Nq = Np ·Nq−p = 0 ·Nq−p = 0.



En reprenant le polynôme Rq de la question précédente, il existe un polynôme Q(X) tel que :

Iq +N −Rq(N)2 = NqQ(N) = 0 donc Rq(N)2 = Iq +N

Donc Rq(N) est une racine carrée de Iq +N .

13) Montrons par récurrence que, pour tout n ∈ N, la matrice Mn est bien définie et Mn = P diag
(
cn(λ1), . . . , cn(λq)

)
P−1.

Initialement, M0 = Iq est bien définie et ∀i, c0(λi) = 1.

Supposons que la matrice Mn est bien définie et que Mn = Pdiag (cn(λ1), · · · , cn(λq))P−1.

D’après la question 5, cn(λi) > 0 pour chaque i ∈ J1, qK, d’où det(Mn) =
∏q

i=1 cn(λi) > 0, par conséquent Mn est

inversible et la matrice Mn+1 = 1
2

(
Mn +AM−1

n

)
est bien définie.

De plus, M−1
n = P diag

(
1

cn(λ1)
, · · · , 1

cn(λq)

)
P−1 d’où :

AM−1
n = Pdiag (λ1, · · · , λq)P

−1P︸ ︷︷ ︸
=Iq

diag

(
1

cn(λ1)
, · · · ,

1

cn(λq)

)
P−1

= Pdiag

(
λ1

cn(λ1)
, · · · ,

λq

cn(λq)

)
P−1

D’où,

Mn+1 =
1

2

(
Mn +AM−1

n

)
=

1

2
P

[
diag (cn(λ1), · · · , cn(λq)) + diag

(
λ1

cn(λ1)
, · · · ,

λq

cn(λq)

)]
P−1

= Pdiag

(
1

2

(
cn(λ1) +

λ1

cn(λ1)

)
, · · · ,

1

2

(
cn(λq) +

λ1

cn(λq)

))
P−1

= Pdiag (cn+1(λ1), · · · , cn+1(λq))P
−1,

ce qui achève la récurrence.

14) Pour tout i ∈ [[1, q]], lim
n→∞

cn(λi) =
√

λi d’après la question 6. L’espace vectoriel Mq(R) étant de dimension finie, la suite

des matrice suivante converge car chacune de ses coordonnées converge :

lim
n→∞

diag (cn(λ1), · · · , cn(λq)) = diag
(√

λ1, · · · ,
√

λq

)
Enfin l’application φ : M 7→ PMP−1 est linéaire sur l’ev Mq(R) qui est de dimension finie d’où φ est continue donc :

lim
n→∞

(
P diag (cn(λ1), · · · , cn(λq))P

−1
)
= lim

n→∞
φ (diag (cn(λ1), · · · , cn(λq)))

= φ
[
lim

n→∞
diag (cn(λ1), · · · , cn(λq))

]
= P diag

(√
λ1, · · · ,

√
λq

)
P−1

Donc la suite des matrices Mn tend vers une racine carrée B = P diag
(√

λ1, · · · ,
√

λq
)
P−1 de la matrice A.

15) Parce que les r sous-espaces caractéristiques de la matrice M sont supplémentaires, la matrice M est semblable à
une matrice diagonale par blocs diag(B1, · · · , Br) � exercice 39 du chapitre IV, autrement dit ∃Q ∈ GLq(R), M =
Qdiag(B1, · · · , Br)Q−1. Et dans les r blocs Bk = µkImk +Nk, les réels µk sont les valeurs propres de M distinctes deux
à deux, de multiplicité mk et les blocs Nk sont nilpotents. Les matrices diagonale diag(µ1Im1 , · · · , µrImr ) et nilpotente
diag(N1, · · · , Nr) commutent car chaque bloc Nk commute avec µkImk .

Posons A = Qdiag(µ1Im1 , · · · , µrImr )Q
−1 et N = Qdiag(N1, · · · , Nr)Q−1. Alors M = A + N , A est diagonalisable,

Sp(A) = Sp(M), N est nilpotente et AN = NA.

16) Par hypothèse, les valeurs propres de M , et donc de A, sont strictement positives. La matrice A est donc inversible car 0
n’est pas une valeur propre.

N = A−1AN = A−1NA car AN = NA. En multipliant à droite par A−1, il vient : NA−1 = A−1N .

17) La matrice A−1N est nilpotente car A−1 et N commutent. D’après la question 12, la matrice Rq(A−1N) est une racine
carrée de la matrice Iq +A−1N .

18) Avec les notations de la question 15, posons B = Qdiag(
√
µ1Im1 , · · · ,

√
µrImr )Q

−1. Cette matrice :

— est bien définie car les valeurs propres µi de A sont positives (en effet Sp(M) = Sp(A) et les valeurs propres de M
sont strictement positives par hypothèse) ;

— est une racine carrée de la matrice A ;

— commute avec A = Qdiag(µ1Im1 , · · · , µrImr )Q
−1 et N = Qdiag(N1, · · · , Nr)Q−1, donc aussi avec A−1N .

19) La matrice BRq(A−1N) est une racine carrée de la matrice M = A(Iq +A−1N) car (BRq(A−1N))2 = B2(Rq(A−1N))2

car les matrices B et A−1N commutent. Or B2 = A et (Rq(A−1N))2 = Iq +A−1N .



Problème 2, tiré de CCP Math PC 2015

Soient (Ω,A ,P) un espace probabilisé et, pour chaque n ∈ N∗, une variable aléatoire Sn qui suit une loi

de Poisson de paramètre n : Sn(Ω) = N et P(X = k) = e−nn
k

k!
pour tout entier k ∈ N.

1) Soit, pour tout n ∈ N∗, la fonction fn définie sur R+ par : ∀ t ∈ R+, fn(t) =
e−ttn

n! .

a) Soit n ∈ N∗. Dresser le tableau des variations de la fonction fn.

b) Déterminer un équivalent de fn(n) quand n tend vers ∞.

2) a) Rappeler l’espérance E(Sn) et la variance de la variable aléatoire Sn et déterminer celles de la
variable aléatoire S∗

n = Sn−n√
n

.

b) Soit n ∈ N∗. Calculer la somme

n∑
k=0

(n− k)e−nn
k

k!
et en déduire que : E (|Sn − n|) = 2e−nn

n+1

n!
.

c) Étudier lim
n→∞

E (|S∗
n|) .

3) a) Rappeler l’hypothèse et l’expression du reste Rn(a, b) de la formule de Taylor avec reste intégral

f(b) =

n∑
k=0

f (k)(a)
(b− a)k

k!
+Rn(a, b)

pour une fonction f sur un intervalle [a, b].

b) Montrer que, pour tout n ∈ N∗,

P (S∗
n ≤ 0) = 1−

∫ n

0

e−t t
n

n!
dt.

c) Établir que, pour tout n ∈ N∗,

P(S∗
n ⩽ 0)−P(S∗

n+1 ⩽ 0) =

∫ n+1

n

e−t tn+1

(n+ 1)!
dt− e−n nn+1

(n+ 1)!
.

d) En déduire que la suite (P(S∗
n ⩽ 0))n∈N∗ converge.

4) Pour tout n ∈ N∗, on note GSn
la fonction génératrice de la variable aléatoire Sn.

a) Montrer que la fonction GSn
est définie sur R et calculer GSn

(t) pour tout t ∈ R.
b) En déduire que, pour tout t > 0, la variable aléatoire tS

∗
n admet une espérance et que :

E(tS
∗
n) =

GSn
(t1/

√
n)

t
√
n

.

c) Étudier, pour tout t ∈ R∗
+, lim

n→∞
E(tS

∗
n).

1) a) Pour chaque n ∈ N∗, fn est dérivable sur R+ et, pour tout t ≥ 0, f ′
n(t) =

e−ttn−1

n!
(n− t).

t 0 n +∞
f ′
n(t) + 0 − 0

fn(n) =
e−nnn

n!
fn(t) ↗ ↘

0 0

b) Grâce à la formule de Stirling, fn(n) ∼
e−nnn

√
2πnnne−n

et, en simplifiant, fn(n) ∼
n→∞

1
√
2πn

.



2) a) E(Sn) = V (Sn) = n. Par linéarité de l’espérance, E(S∗
n) =

E(Sn)−n√
n

= 0. Et V (S∗
n) =

V (Sn)√
n 2 = 1.

b) On calcule la somme K =
n∑

k=0

(n− k)e−n nk

k!
grâce à un télescope :

K = ne−n

(
n∑

k=0

nk

k!
−

n∑
k=1

nk−1

(k − 1)!

)
= ne−n nn

n!
.

E(|Sn − n|) =
∞∑

k=0

|k − n|e−n nk

k!
=

n∑
k=0

(n− k)e−n nk

k!
+

∞∑
k=n+1

(k − n)e−n nk

k!
= K + L,

Or L−K = E(Sn − n) = 0, d’où K = L, donc

E(|Sn − n|) = 2K = 2e−n nn+1

n!
.

c) E(|S∗
n|) = 1√

n
E(|Sn − n|) = 2

√
nfn(n) ∼

n→∞

√
2
π

d’après la question 1b. Donc lim
n→∞

E (|S∗
n|) =

√
2/π.

3) a) Si f est une fonction de classe Cn+1 sur le segment [a, b], alors la formule de Taylor est vérifiée avec Rn(a, b) =∫ b

a
f (n+1)(t)

(b− t)n

n!
dt.

b) Soit n ∈ N∗ : (S∗
n ≤ 0) = (Sn ≤ n) =

n⋃
k=0

(Sn = k) et cette union est disjointe, d’où P (S∗
n ≤ 0) = P (Sn ≤ n) =

n∑
k=0

P (Sn = k), donc : P (S∗
n ≤ 0) = e−n

n∑
k=0

nk

k!
.

On applique la formule de Taylor avec reste intégral à la fonction f = exp qui est de classe Cn+1 sur [a, b] = [0, n]. Pour

tout k ∈ N, f (k) = f et f(0) = 1 donc en =

n∑
k=0

nk

k!
+Rn(0, n), où Rn(0, n) =

∫ n

0
et

(n− t)n

n!
dt =

∫ n

0

en−uun

n!
du

(par le changement de variable u = n− t qui est bien de classe C 1).

On multiplie l’égalité obtenue par e−n : 1 = e−n
n∑

k=0

nk

k!
+

∫ n

0

e−ttn

n!
dt. D’où

P (S∗
n ≤ 0) = 1−

∫ n

0
e−t t

n

n!
dt.

c) Par suite :

P (S∗
n ≤ 0)− P (S∗

n+1 ≤ 0) =

∫ n+1

0
e−t tn+1

(n+ 1)!
dt−

∫ n

0
e−t t

n

n!
dt

=

∫ n

0
e−t tn+1

(n+ 1)!
dt+

∫ n+1

n
e−t tn+1

(n+ 1)!
dt−

∫ n

0
e−t t

n

n!
dt.

Dans la première intégrale, on pose u(t) =
tn+1

(n+ 1)!
et v(t) = −e−t. Les fonctions u et v sont de classe C 1 et

u′(t) =
tn

n!
, v′(t) = e−t. D’où, en intégrant par parties :

P (S∗
n ≤ 0)− P (S∗

n+1 ≤ 0) =

∫ n+1

n
e−t tn+1

(n+ 1)!
dt− e−n nn+1

(n+ 1)!
.

d) P (S∗
n ≤ 0)−P (S∗

n+1 ≤ 0) =

∫ n+1

n
fn+1(t)dt−fn+1(n) et la fonction fn+1 est croissante sur [n;n+1] d’après la ques-

tion 1a. Donc, pour tout t ∈ [n;n+1], fn+1(t) ≥ fn+1(n) et, en intégrant sur [n;n+1] : P (S∗
n ≤ 0)−P (S∗

n+1 ≤ 0) ≥ 0.
La suite (P (S∗

n ≤ 0))n∈N∗ est donc décroissante. Par ailleurs, elle est minorée par 0 (car toute probabilité est
positive), donc elle converge.

4) a) Soient n ∈ N∗ et t ∈ R : la série
∑ (nt)k

k!
converge et sa somme vaut

∞∑
k=0

(nt)k

k!
= ent. D’où GSn (t) =

∞∑
k=0

e−n (nt)k

k!

est défini et vaut
GSn (t) = en(t−1)

b) Soit t ∈ R+∗ et n ∈ N∗ : GSn (t) =
∞∑

k=0

P(Sn = k)tk = E(tSn ) d’après le théorème de transfert.



Or tS
∗
n = (t1/

√
n)Sn−n = (t1/

√
n)Sn × t−

√
n. D’où, par linéarité de l’espérance, tS

∗
n admet une espérance et

E(tS
∗
n ) =

GSn (t
1/

√
n)

t
√
n

.

c) D’après les deux questions précédentes, E(tS
∗
n ) =

exp
(
n(t1/

√
n − 1)

)
t
√
n

.

eu = 1+u+
u2

2
+u2ε(u), où ε(u) tend vers 0 quand u tend vers 0. D’où t1/

√
n = exp

(
1√
n
ln t
)
= 1+

ln t
√
n
+
(ln t)2

2n
+

1

n
εn,

où εn tend vers 0 quand n tend vers ∞. D’où n(t1/
√
n−1) =

√
n ln t+

(ln t)2

2
+εn. Donc E(tS

∗
n ) = exp

[
(ln t)2

2
+ εn

]
.

Par continuité de la fonction exponentielle, lim
n→∞

E(tS
∗
n ) = exp

(
(ln t)2

2

)
.


