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D.S. no 6 de mathématiques

Cet énoncé comporte un exercice et deux problèmes.

Exercice

Soit E = C([0, 1],R) l’ensemble des fonctions continues du segment [0, 1] vers R. On note T l’endomorphisme
défini sur E par :

∀f ∈ E, ∀x ∈ [0, 1], T (f)(x) = xf
(x
2

)
.

1) Les normes ∥ · ∥∞ et ∥ · ∥2 définies ci-dessous sont-elles équivalentes ?

2) Déterminer Ker(T ).

3) Soit g ∈ Im(T ). Déterminer g(0) et montrer que g est dérivable en 0. Déterminer Im(T ).

4) On munit E de la norme ∥.∥∞ définie par :

∀f ∈ E, ∥f∥∞ = sup
x∈[0,1]

|f(x)|.

Montrer que l’application T est continue et déterminer |||T |||∞.

5) On munit E de la norme ∥.∥2 définie par :

∀f ∈ E, ∥f∥2 =

√∫ 1

0

|f(x)|2 dx.

Montrer que : ∀f ∈ E, ∥T (f)∥2 ≤
√
2∥f∥2.

6) On pose, pour chaque n ≥ 2, la fonction fn affine par morceaux définie par :

fn(0) = fn(
1

2
− 1

n
) = fn(

1

2
+

1

n2
) = fn(1) = 0 et fn(

1

2
) = 1.

En admettant que

∫ 1

0

(fn(x))
2
dx =

n+ 1

3n2
et que

∫ 1

0

(T (fn)(x))
2
dx =

10n5 + 4n3 + 10n2 + 4

15n6
, déter-

miner |||T |||2.



Problème 1

Une première approximation de
√
2.

1) Pour tout n ∈ N, on pose bn =
(2n)!

22n(2n− 1)(n!)2
. Montrer que, pour tout x ∈]− 1, 1[,

√
1 + x =

∞∑
n=0

(−1)n+1bnx
n.

2) Montrer que la série
∑

(−1)n+1bn converge et déterminer sa somme

∞∑
n=0

(−1)n+1bn.

3) Montrer que
√
2 =

n∑
k=0

(−1)k+1bk + O
n→∞

(
1

n3/2

)
.

La suite de Héron d’Alexandrie.

4) Soit a ∈ R+. Montrer que, si x > 0, alors 1
2

(
x+ a

x

)
≥

√
a.

5) On pose

c0(a) = 1 et ∀n ∈ N, cn+1(a) =
1

2

(
cn(a) +

a

cn(a)

)
.

Montrer que la suite (cn(a))n∈N est bien définie.

6) Montrer que cette suite converge et déterminer sa limite.

7) Calculer c1(2) et montrer que, pour tout n ∈ N∗,

cn(2)
2 − 2 ⩽ 8

(
1

32

)2n−1

.

8) En déduire que

√
2 = cn(2) + O

n→∞

((
1

32

)2n−1)
.

Cette approximation de
√
2 est-elle plus ou moins précise que celle obtenue à la question 3 ?

Racines carrées d’une matrice.

Soit q ∈ N∗. On dit qu’une matrice B ∈ Mq(R) est une racine carrée d’une matrice A ∈ Mq(R) si B2 = A.

9) Montrer que la matrice I2 possède une infinité de racines carrées.

10) La matrice −I2 possède-t-elle une racine carrée ?

11) Montrer qu’il existe un polynôme Rq ∈ R[X] tel que Xq divise 1 +X −Rq(X)2.

12) Soit N ∈ Mq(R). Montrer que, si N est nilpotente, alors Nq = 0 et en déduire l’expression d’une racine
carrée de Iq +N .



Racines carrées d’une matrice diagonalisable.

Soit une matrice A ∈ Mq(R). On suppose qu’il existe une matrice P inversible telle que

A = P diag(λ1, . . . , λq)P
−1

et que les valeurs propres λ1, . . . , λq (non nécessairement distinctes deux à deux) sont positives.

13) On pose

M0 = Iq et ∀n ∈ N, Mn+1 =
1

2

(
Mn +AM−1

n

)
.

Montrer, par récurrence sur n ∈ N que, pour tout n ∈ N, Mn est bien définie et que

Mn = P diag
(
cn(λ1), . . . , cn(λq)

)
P−1.

14) En déduire que la suite (Mn)n∈N converge vers une racine carrée de A.

Racines carrées d’une matrice trigonalisable.

On suppose que la matrice M ∈ Mq(R) est trigonalisable et que ses r valeurs propres µ1, · · · , µr

(distinctes deux à deux et de multiplicités respectives m1, · · · ,mr) sont strictement positives.

15) Montrer qu’il existe deux matrices A et N telles que :

M = A+N,

A est diagonalisable et Sp(A) = Sp(M),

N est nilpotente et AN = NA.

(On rappelle que les sous-espaces caractéristiques d’une matrice trigonalisable sont supplémentaires.)

16) Montrer que la matrice A est inversible et que les matrices A−1 et N commutent.

17) En déduire une racine carrée de la matrice Iq +A−1N .

18) Montrer que la matrice A possède une racine carrée B qui commute avec A−1N .

19) En déduire une racine carrée de la matrice M .



Problème 2

Soient (Ω,A ,P) un espace probabilisé et, pour chaque n ∈ N∗, une variable aléatoire Sn qui suit une loi

de Poisson de paramètre n : Sn(Ω) = N et P(X = k) = e−nn
k

k!
pour tout entier k ∈ N.

1) Soit, pour tout n ∈ N∗, la fonction fn définie sur R+ par : ∀ t ∈ R+, fn(t) =
e−ttn

n! .

a) Soit n ∈ N∗. Dresser le tableau des variations de la fonction fn.

b) Déterminer un équivalent de fn(n) quand n tend vers ∞.

2) a) Rappeler l’espérance E(Sn) et la variance de la variable aléatoire Sn et déterminer celles de la
variable aléatoire S∗

n = Sn−n√
n

.

b) Soit n ∈ N∗. Calculer la somme

n∑
k=0

(n− k)e−nn
k

k!
et en déduire que : E (|Sn − n|) = 2e−nn

n+1

n!
.

c) Étudier lim
n→∞

E (|S∗
n|) .

3) a) Rappeler l’hypothèse et l’expression du reste Rn(a, b) de la formule de Taylor avec reste intégral

f(b) =

n∑
k=0

f (k)(a)
(b− a)k

k!
+Rn(a, b)

pour une fonction f sur un intervalle [a, b].

b) Montrer que, pour tout n ∈ N∗,

P (S∗
n ≤ 0) = 1−

∫ n

0

e−t t
n

n!
dt.

c) Établir que, pour tout n ∈ N∗,

P(S∗
n ⩽ 0)−P(S∗

n+1 ⩽ 0) =

∫ n+1

n

e−t tn+1

(n+ 1)!
dt− e−n nn+1

(n+ 1)!
.

d) En déduire que la suite (P(S∗
n ⩽ 0))n∈N∗ converge.

4) Pour tout n ∈ N∗, on note GSn la fonction génératrice de la variable aléatoire Sn.

a) Montrer que la fonction GSn
est définie sur R et calculer GSn

(t) pour tout t ∈ R.
b) En déduire que, pour tout t > 0, la variable aléatoire tS

∗
n admet une espérance et que :

E(tS
∗
n) =

GSn
(t1/

√
n)

t
√
n

.

c) Étudier, pour tout t ∈ R∗
+, lim

n→∞
E(tS

∗
n).


