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Exercice 1.

� Une définition — On dit qu’une partie A d’un ev E est convexe si ∀(a, b) ∈ A2, ∀λ ∈ [0, 1], λa+ (1− λ)b.

Soit E un espace vectoriel. Soient x et y deux vecteurs distincts.

1. Représenter sur un dessin les deux ensembles

F = {λx+ (1− λ)y, λ ∈ R} et G = {λx+ (1− λ)y, λ ∈ [0, 1]}.

Les ensembles F et G sont-ils des sous-espaces vectoriels de E ?

2. On munit E d’une norme ∥ · ∥. Soit B l’ensemble des vecteurs de norme strictement inférieure à 1, i.e.
la boule ouverte de centre 0E et de rayon 1. Montrer que B est convexe.

3. On suppose que la norme ∥ · ∥ est euclidienne. Soit S l’ensemble des vecteurs de norme égale à 1. Montrer
que : si x et y appartiennent à S, alors

∀λ ∈ R\ {0, 1} , (1− λ)x+ λy /∈ S.

Interpréter cette propriété sur un dessin.

4. On ne suppose plus que la norme est euclidienne. La deuxième propriété est-elle encore vraie ?

1. Le vecteur x− y n’est pas nul et λx+ (1− λ)y = y + λ(x− y). D’où F est la droite passant par y et dirigée par x− y.
Cette droite est un sous-espace vectoriel de E si, et seulement si, elle passe par l’origine 0E . Donc l’ensemble F est un
sous-espace vectoriel de E si, et seulement si, les vecteurs x et y sont liés.

L’ensemble G est le segment [x, y]. Ce n’est pas un sous-espace vectoriel de E car (par l’absurde) : si G est un sev, alors
x− y ∈ G car x ∈ G et y ∈ G. D’où y + 2(x− y) ∈ G. C’est absurde car y + 2(x− y) = λx+ (1− λ)y ⇐⇒ λ = 2.

2. Soient x et y deux vecteurs de B : ∥x∥ < 1 et ∥y∥ < 1. Pour tout réel λ ∈ [0, 1], ∥λx+ (1− λ)y∥ ≤ ∥λx∥+ ∥(1− λ)y∥ =
|λ| · ∥x∥+ |1− λ| · ∥y∥ < |λ|+ |1− λ| = λ+1− λ = 1. D’où ∥λx+ (1− λ)y∥ < 1. Donc le vecteur λx+ (1− λ)y appartient
à B.

On vient donc de montrer que : la boule ouverte (de rayon 1 et de centre 0E) est convexe. Cette propriété dit que : si x et
y appartiennent à B, alors tout le segment [x, y] est inclus dans B. (Voir la figure à gauche.)
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3. Soit P (λ) = ∥(1 − λ)x + λy∥2 − 1. La norme ∥ · ∥ est euclidienne, d’où la fonction P est un polynôme : P (λ) =<
(1− λ)x+ λy|(1− λ)x+ λy > −1 = ∥y − x∥2 · λ2 + 2 < x|y − x > ·λ+ ∥x∥2 − 1.



Si x et y appartiennent à S, alors 0 et 1 sont deux racines du polynôme P . Or le polynôme P est de degré 2 car x ̸= y.
D’où : le nombre de ses racines est inférieur ou égal à 2. D’où ∀λ ∈ R\ {0, 1} , P (λ) ̸= 0. Donc

∀λ ∈ R\ {0, 1} , (1− λ)x+ λy /∈ S.

On vient de montrer que : si x et y appartiennent à S, alors les autres points de la droite (x, y) n’appartiennent pas à S.
(Voir la figure au centre.)

4. Non. Voici un contre-exemple. On choisit :

— la norme « infini » : ∥(x1, x2)∥∞ = max (|x1|, |x2|) ;
— les deux vecteurs x = (1, 1) et y = (−1, 1).

Tout le segment [x, y] est inclus dans S. (Voir la figure à droite.)

Exercice 2 (Un hyperplan est, ou bien fermé, ou bien dense).

Soit E un espace vectoriel et ∥ · ∥ une norme sur E. Soit F un sous-espace vectoriel de E. Soit F̄ son
adhérence.

1. Montrer que F̄ est un sev de E.

2. Soit un vecteur u ∈ E. On suppose que E = Vect(u)⊕ F et F ̸= F̄ .

(a) Montrer que : il existe un vecteur v ∈ F̄ tel que E = Vect(v)⊕ F .

(b) En déduire que F est dense dans E.

3. On munit l’ev E = R[X] de la norme définie pour tout polynôme P par ∥P∥ = supx∈[0,1] |P (x)|.
(a) Montrer que l’application f : R[X] → R, P 7→ P (0) est continue mais que l’application g : R[X] →

R, P 7→ P (2) ne l’est pas.

(b) Que dire de l’hyperplan F = Ker(f) ? Et de l’hyperplan G = Ker(g) ?

� Rappel sur les hyperplans (proposition 12 du chapitre II) — On rappelle que, dans un K− ev E (de dimension finie ou

infinie), si un vecteur u n’appartient pas à un hyperplan H, alors l’hyperplan H et la droite Vect(u) sont supplémentaires :

H ⊕Vect(u) = E.

1. Première méthode (avec des boules) : Soient ε > 0, x ∈ F̄ et y ∈ F̄ . Alors ∃a ∈ F, ∃b ∈ F, ∥x− a∥ ≤ ε
2
et ∥y − b∥ ≤ ε

2
.

D’où ∥(x+ y)− (a+ b)∥ ≤ ∥x− a∥+ ∥y − b∥ ≤ ε. Donc x+ y ∈ F̄ .

Soit λ ∈ R∗. Alors ∃a ∈ F, ∥x− a∥ ≤ ε
|λ| .

D’où ∥λx− λa∥ ≤ ε. Donc λx ∈ F̄ .

Seconde méthode (avec des suites) : Soient deux vecteurs u et v de F̄ : il existe des suites respectives (un) et (vn) de
vecteurs de F convergeant vers u et v respectivement. Soient deux réels λ et µ. Pour chaque n ∈ N, le vecteur λun + µvn
appartient à F car F est un sev. De plus, λun + µvn −→

n→∞
λu + µv d’après le théorème des gendarmes car, d’après

l’inégalité triangulaire, 0 ≤ ∥(λun + µvn)− (λu+ µv)∥ ≤ |λ|∥un − u∥+ |µ|∥vn − v∥, qui tend vers |λ| · 0 + |µ| · 0 = 0.

En conclusion de l’une ou l’autre de ces méthodes, F̄ est un sous-espace vectoriel de F car :

* 0E ∈ F et F ⊂ F̄ , d’où 0E ∈ F̄ ;

** F̄ est stable par superpositions d’après la question précédente.

2. (a) F̄ ̸= F et F ⊂ F̄ , d’où ∃v ∈ F̄ \ F. Or E = Vect(u)⊕ F , d’où v = αu+ vF , où α ̸= 0 et vF ∈ F .

Soit x ∈ E : x = βu+ xF = β
α
v + xF − 1

α
vF , d’où E = Vect(v) + F. La somme est directe car Vect(v) ∩ F = {0E}

car x ∈ Vect(v) ∩ F =⇒ ∃γ ∈ R, x = γv et x ∈ F =⇒ γ = 0 car v ̸∈ F.

(b) On a montré que F̄ est un sev de E, d’où v ∈ F̄ =⇒ Vect(v) ⊂ F̄ . De plus F ⊂ F̄ , d’où Vect(v)⊕ F ⊂ F̄ car F̄ est
un sev de E.

Or E = Vect(v)⊕ F , d’où E ⊂ F̄ , d’où F̄ = E, donc F est dense dans E.

3. (a) Pour tout polynôme P ∈ R[X], |f(P ) = |P (0)| ≤ ∥P∥, donc l’application linéaire f est continue.

Soit la suite des polynômes Pn = Xn

2n
. Pour tout n ∈ N, g(Pn) = 1, d’où la suite des réels g(Pn) ne tend pas vers 0R.

Or la suite des polynômes Pn tend vers 0R[X] car ∥Pn − 0R[X]∥ = 1
2n

ne tend pas vers 0R. D’où g(Pn) ne tend pas
vers g(0R[X]) quand Pn tend vers 0R[X]. Donc l’application g n’est pas continue en 0R[X].

(b) L’hyperplan F est fermé car c’est l’image réciproque du fermé {0} par l’application continue f . Mais l’hyperplan G
est dense car il n’est pas fermé. En effet, pour tout n ∈ N, le polynôme Pn − 1 appartient à G car g(Pn − 1) = 0. Et
la suite des polynômes Pn − 1 tend vers le polynôme −1 car ∥(Pn − 1)− (−1)∥ = 1

2n
tend vers 0R. Or le polynôme

−1 n’appartient pas à G, ce qui contredit la caractérisation séquentielle d’un fermé.


