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Exercice 1.
> Une définition — On dit qu'une partic A d’un ev E est convexe si V(a,b) € A%, YA € [0,1], Aa + (1 — \)b.
Soit F un espace vectoriel. Soient x et y deux vecteurs distincts.

1. Représenter sur un dessin les deux ensembles
F={z+({1-MNy,A€eR} et G={\+(1-Ny,Xel0,1]}.

Les ensembles F' et G sont-ils des sous-espaces vectoriels de F ?

2. On munit £ d’une norme || - ||. Soit B ensemble des vecteurs de norme strictement inférieure a 1, i.e.
la boule ouverte de centre Og et de rayon 1. Montrer que B est convexe.

3. On suppose que la norme || - || est euclidienne. Soit S 'ensemble des vecteurs de norme égale & 1. Montrer
que : si x et y appartiennent a S, alors

YAeR\{0,1}, (1—-XNz+Ay¢S.

Interpréter cette propriété sur un dessin.

4. On ne suppose plus que la norme est euclidienne. La deuxiéme propriété est-elle encore vraie ?

1. Le vecteur z — y n’est pas nul et Az + (1 — \)y =y + A(z — y). D’ou F est la droite passant par y et dirigée par x — y.
Cette droite est un sous-espace vectoriel de E si, et seulement si, elle passe par 1'origine 0g. Donc ’ensemble F' est un
sous-espace vectoriel de E si, et seulement si, les vecteurs x et y sont liés.

L’ensemble G est le segment [z, y]. Ce n’est pas un sous-espace vectoriel de E car (par I'absurde) : si G est un sev, alors
z—y€EGcarz€Getye G.Dony+2x—y) €G. Cestabsurde car y +2(xz —y) = Az + (1 — Ny <= A =2.

2. Soient z et y deux vecteurs de B : ||z|| < 1 et ||y|| < 1. Pour tout réel A € [0,1], ||[Az + (1 — Ny|| < [|[Az]| +[|(1 — Nyl =
ALzl + 11 =X - lyll < [Al+]1=A]=A+1—=X=1.Du ||Az+ (1 — N)y|| < 1. Donc le vecteur Az + (1 — \)y appartient
aB

On vient donc de montrer que : la boule ouverte (de rayon 1 et de centre Og) est convexe. Cette propriété dit que : si z et
y appartiennent & B, alors tout le segment [z, y] est inclus dans B. (Voir la figure & gauche.)
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3. Soit P(A) = ||[(1 — M)z + Ay||> — 1. La norme || - || est euclidienne, d’ol la fonction P est un polynéme : P()\) =<

IT=Nz+XMA-Nz+dy>—-1=|y—=z]> - N +2<zly—2> A+]|z]? -1



Si z et y appartiennent & S, alors 0 et 1 sont deux racines du polynéme P. Or le polynéme P est de degré 2 car x # y.
D’oli : le nombre de ses racines est inférieur ou égal & 2. D’ou VA € R\ {0,1}, P(\) # 0. Donc

VYA eR\{0,1}, (1—-XNz+Ay¢S.
On vient de montrer que : si z et y appartiennent & S, alors les autres points de la droite (z,y) n’appartiennent pas & S.
(Voir la figure au centre.)
4. Non. Voici un contre-exemple. On choisit :
— la norme « infini » : ||(z1, 22)||cc = max (|z1], |z2]);
— les deux vecteurs z = (1,1) et y = (—1,1).
Tout le segment [z, y] est inclus dans S. (Voir la figure & droite.)

Exercice 2 (Un hyperplan est, ou bien fermé, ou bien dense).

Soit E un espace vectoriel et || - || une norme sur E. Soit F' un sous-espace vectoriel de E. Soit F son
adhérence.

1. Montrer que F' est un sev de E.
2. Soit un vecteur u € E. On suppose que E = Vect(u) ® F et F # F.
(a) Montrer que : il existe un vecteur v € F tel que E = Vect(v) @ F.
(b) En déduire que F est dense dans E.
3. On munit 'ev £ = R[X] de la norme définie pour tout polynome P par ||P|| = sup,cp 1) [P(2)].
(a) Montrer que 'application f : R[X] — R, P+ P(0) est continue mais que application g : R[X] —
R, P+~ P(2) ne lest pas.
(b) Que dire de 'hyperplan F' = Ker(f) ? Et de 'hyperplan G = Ker(g) ?

> Rappel sur les hyperplans (proposition 12 du chapitre IT) — On rappelle que, dans un K — ev E (de dimension finie ou
infinie), si un vecteur u n’appartient pas a un hyperplan H, alors I'hyperplan H et la droite Vect(u) sont supplémentaires :
H ¢ Vect(u) = E.

1. Premiere méthode (avec des boules) : Soient € >0,z € F et y € F. AlorsJa e F, 3be F, |z —al < 5 et lly—bl| < §.
Dot [|(z +y) — (a +b)|| < |z —all +[ly — b]| < &. Donc x +y € F.

Soit A € R*. Alors da € F, ||z —all < ‘—i‘

D’ou ||Az — Aa|| < €. Donc Az € F.

Seconde méthode (avec des suites) : Soient deux vecteurs u et v de F : il existe des suites respectives (un) et (vn) de

vecteurs de F' convergeant vers u et v respectivement. Soient deux réels A et p. Pour chaque n € N, le vecteur Aup + poy,

appartient & F' car F' est un sev. De plus, Aup, + pvn, —> Au + pv d’apres le théoréeme des gendarmes car, d’apres
n—oo

Pinégalité triangulaire, 0 < ||(Aun + pvn) — (Au + po)|| < |Al||lun — ul] + |p]||vn — v||, qui tend vers |A] - 0+ |u| -0 = 0.
En conclusion de I'une ou 'autre de ces méthodes, F' est un sous-espace vectoriel de F' car :

*0p € Fet FCF, doulg € F;

** [ est stable par superpositions d’apres la question précédente.

2. (a) F#Fet FCF,don3vec F\F. Or E=Vect(u)®F, dott v = au + vp, ot @ # 0 et vp € F.

Soitz € E:x=pu+xp = gv +xp — évp, d’olt E = Vect(v) + F. La somme est directe car Vect(v) N F = {0g}
carz € Vect(v) NF — FyeER, z=ywetz € F = y=0carv gF.

(b) On a montré que F est un sev de E, d’oi v € F = Vect(v) C F. De plus F C F, d’ou Vect(v) ® F C F car F est
un sev de F.

Or E = Vect(v) ® F, dott E C F, d’ott F = E, donc F est dense dans E.
3. (a) Pour tout polynéme P € R[X], |f(P) = |P(0)| < ||P]|, donc I’application linéaire f est continue.

Soit la suite des polynomes P, = }2(—: Pour tout n € N, g(Pp) = 1, d’ott la suite des réels g(Pp) ne tend pas vers Og.
Or la suite des polynémes P, tend vers Og[x] car ||Pn — Og[x]ll = % ne tend pas vers Og. D’ott g(Py,) ne tend pas

vers g(OR[X]) quand Py tend vers Og[x]. Donc I'application g n’est pas continue en Og[x.

(b) L’hyperplan F est fermé car c’est I'image réciproque du fermé {0} par I’application continue f. Mais I’hyperplan G
est dense car il n’est pas fermé. En effet, pour tout n € N, le polynéme P, — 1 appartient & G car g(P, — 1) = 0. Et
la suite des polynémes P, — 1 tend vers le polynéme —1 car ||(P, — 1) — (=1)|| = 2% tend vers Og. Or le polynéme
—1 n’appartient pas a G, ce qui contredit la caractérisation séquentielle d’un fermé.



