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Exercice 1. Les fonctions suivantes définies par

f(x, y) =
x3 + y3

x2 + 2y2
, g(x, y) =

xy2

x2 + y4
, h(x, y) =

x3 + y4

|x|+ y2

pour tout (x, y) ̸= (0, 0) et par f(0, 0) = g(0, 0) = h(0, 0) = 0 sont-elles continues en (0, 0) ?

Exercice 2. Soit f la fonction définie sur R2 par f(x, y) =
y4

x2 + y2
pour tout (x, y) ̸= (0, 0) et f(0, 0) = 0.

Montrer que f est de classe C1 sur R2.

— En chaque point (x, y) ̸= (0, 0), les deux dérivées partielles

∂1f(x, y) =
−2xy4

(x2 + y2)2
, ∂2f(x, y) =

4y3x2 + 2y5

(x2 + y2)2

existent (car f est un quotient de fonctions dérivables dont le dénominateur ne s’annule pas) et sont continues (car les
fonctions ∂1f et ∂2f sont des quotients de fonctions continues dont le dénominateur ne s’annule pas).

— En (0, 0), la dérivée partielle ∂1f existe et vaut 0 car

f(h, 0)− f(0, 0)

h
=

0− 0

h
−→
h→0

0.

Et la fonction ∂1f est continue en (0, 0) car ∂1f(x, y) −→
(x,y)→(0,0)

0 = ∂1f(0, 0). En effet :

0 ≤ |∂1f(x, y)| ≤
2|x| · |y|4

(x2 + y2)2
≤ 2

∥(x, y)∥5

∥(x, y)∥4
≤ 2∥(x, y)∥

car |x| =
√

y2 ≤
√

x2 + y2 = ∥(x, y)∥ et |y| =
√
x2 ≤

√
x2 + y2 = ∥(x, y)∥. D’où ∂1f(x, y) −→

(x,y)→(0,0)
0 d’après le

théorème des gendarmes.

— De même, ∂2f(0, 0) existe et vaut 0 car

f(0, k)− f(0, 0)

k
=

k2 − 0

k
= k −→

k→0
0

Et la fonction ∂2f est continue en (0, 0) car ∂2f(x, y) −→
(x,y)→(0,0)

0 = ∂2f(0, 0). En effet

0 ≤ |∂2f(x, y)| ≤
4|y|3|x|2 + 2|y|5

(x2 + y2)2
≤ 6∥(x, y)∥

Donc la fonction f est de classe C1 sur R2.

Exercice 3. Soit f(x, y) =
sin(xy)

|x|+ |y|
pour tout (x, y) ̸= (0, 0) et f(0, 0) = 0. Montrer que la fonction f est

continue en (0, 0), que ∂1f(0, 0) existe mais que ∂1f n’est pas continue en (0, 0).



| sin(u)| ≤ |u| pour tout u ∈ R, d’où |f(x, y)| ≤
|xy|

|x|+ |y|
. Or |xy| ≤

√
x2 + y2

√
x2 + y2 ≤ ∥(x, y)∥2. Et (|x| + |y|)2 =

x2 + y2 + 2|xy| ≥ x2 + y2, d’où |x|+ |y| ≥ ∥(x, y)∥. Donc

0 ≤ |f(x, y)| ≤
|xy|

|x|+ |y|
≤

∥(x, y)∥2

∥(x, y)∥
≤ ∥(x, y)∥ −→

(x,y)→(0,0)
0.

D’où (gendarmes) : f(x, y) −→
(x,y)→(0,0)

0. Or f(0, 0) = 0 par définition. Donc f est continue en (0, 0).

f(0 + h, 0)− f(0, 0)

h
=

sin(h·0)
|h|+0

− 0

h
= 0 −→

h→0
0, donc ∂1f(0, 0) existe et ∂1f(0, 0) = 0.

Soient x > 0 et y > 0 : alors |x| = x, |y| = y, d’où f(x, y) =
sin(xy)

x+ y
et ∂1f(x, y) =

y cos(xy)(x+ y)− sin(xy)

(x+ y)2
.

En particulier, ∂1f(x, x) =
2x2 cos(x2)− sin(x2)

(2x)2
=

2x2(1 + ε(x))− (x2 + x2ε(x))

(2x)2
=

x2 + x2ε(x)

4x2
= 1

4
+ ε(x) −→

x→0+

1
4
. Or

1
4
̸= ∂1f(0, 0). D’où la fonction ∂1f n’est pas continue en (0, 0).

Exercice 4 (Dériver suivant un vecteur). Soient un ouvert U de R2, un point a = (a1, a2) ∈ U et un vecteur
v = (v1, v2) ∈ R2. On dit qu’une fonction f : U → R est dérivable en le point a suivant le vecteur v si la
limite

lim
t→0

f(a+ tv)− f(a)

t

existe et est finie. On note alors Dvf(a) cette limite et on l’appelle la dérivée de f en a suivant v.

1. Montrer que : si f est dérivable en a suivant tout vecteur v, alors f admet des dérivées partielles en a.

2. Soit g(x, y) =
x2 · y
x4 + y2

si (x, y) ̸= (0, 0) et g(0, 0) = 0.

(a) Montrer que la fonction g n’est pas continue en (0, 0).

(b) Montrer que g est dérivable en (0, 0) suivant tout vecteur (x, y).

3. Montrer que : si f est de classe C1 sur U , alors f est dérivable en tout point a ∈ U suivant tout vecteur
v et exprimer Dvf(a) à l’aide des dérivées partielles de f en a.

La réciproque est-elle vraie ?

1. La fonction f est dérivable en a suivant chaque vecteur de la base (e1, e2). D’où
f(a+ te1)− f(a)

t
−→
t→0

De1f(a). Or

f(a+ te1)− f(a)

t
=

f(a1 + t, a2)− f(a1, a2)

t
, qui a donc une limite finie, égale à De1f(a). Donc ∂1f(a) existe et est égal

à De1f(a). De même, ∂2f(a) existe et est égal à De2f(a).

2. (a) La fonction g n’est pas continue en (0, 0) car (x, x2) −→
x→0

(0, 0) mais g(x, x2) = 1
2
ne tend pas vers g(0, 0) = 0.

(b) Soient a = (0, 0) et v = (x, y) ̸= (0, 0). Alors
g(a+tv)−g(a)

t
=

g(tx,ty)
t

= t3x2y
t4x4+t2y2 , d’où :

— (premier cas) si y ̸= 0, alors
g(tx,ty)

t
= x2y

t2x4+y2 −→
t→0

x2

y
;

— (second cas) si y = 0, alors
g(tx,ty)

t
= 0 −→

t→0
0.

Donc g est dérivable en (0, 0) suivant tout vecteur et D(x,y)g(0, 0) est égal à
x2

y
si y ̸= 0 et est égal à 0 si y = 0.

3. Soit v = (v1, v2) ∈ R2. Si la fonction f est de classe C1, alors f(a+ tv) = f(a1+ tv1, a2+ tv2) = f(a1, a2)+ tv1∂1f(a1, a2)+

tv2∂2f(a1, a2) + ∥tv∥ε(tv) d’après la formule de Taylor & Young. D’où, pour tout t ∈ R∗ :
f(a+ tv)− f(a)

t
= v1∂1f(a) +

v2∂2f(a) + ∥v∥ε(tv) −→
t→0

v1∂1f(a) + v2∂2f(a). Donc f est dérivable en a suivant v et Dvf(a) = v1∂1f(a) + v2∂2f(a).

La réciproque est fausse : la question précédente exhibe un contre-exemple. En effet, elle est dérivable en (0, 0) suivant
tout vecteur. Et aussi en tout autre point (x, y) car elle est de classe C1 sur R2 \ {(0, 0}. Mais elle n’est pas continue en
(0, 0), donc a fortiori pas de classe C1 sur R2 � corollaire 14 du chapitre XVIII.



Exercice 5. Soit φ : R → R une fonction de classe C1.

1. Soit la fonction f : R2 → R, (x, y) 7→ φ(x2 + y2).

Montrer que f est de classe C1 et calculer x∂f
∂y − y ∂f

∂x . Interpréter géométriquement le résultat.

2. Soit la fonction g : R∗ × R → R, (x, y) 7→ φ( yx ).

Montrer que g est de classe C1 et calculer x ∂g
∂x + y ∂g

∂y . Interpréter géométriquement le résultat.

1. Soit la fonction f : R2 → R, (x, y) 7→ φ(x2 + y2).

φ est dérivable, d’où : ∂1f(x, y) = 2xφ′(x2 + y2) et ∂2f(x, y) = 2yφ′(x2 + y2). Or φ‘ est continue, d’où ∂1f et ∂2f sont
continues (car ce sont des produits et composées de fonctions continues). Donc f est de classe C1.

De plus x · ∂2f(x, y)− y · ∂1f(x, y) = x · 2yφ′(x2 + y2)− y · 2xφ′(x2 + y2) = 0.

Or x · ∂2f(x, y)− y · ∂1f(x, y) =
∣∣∣∣x ∂1f(x, y)
y ∂2f(x, y)

∣∣∣∣ = det (x⃗,∇f(x⃗)) . D’où le vecteur x⃗ = (x, y) et le gradient ∇f(x⃗) sont

colinéaires. Pourquoi ? Car le cercle d’équation x2 + y2 = cte est une courbe de niveau de la fonction f et le gradient est
orthogonal à cette courbe de niveau.

2. Soit la fonction g : R∗ × R → R, (x, y) 7→ φ( y
x
).

La fonction g est de classe C1 car ∂1g(x, y) =
−y

x2
φ′( y

x
) et ∂2g(x, y) =

1

x
φ′( y

x
) et φ′ est continue. De plus x · ∂1g(x, y) +

y · ∂2g(x, y) = 0. Or x · ∂1g(x, y) + y · ∂2g(x, y) est égal au produit scalaire ⟨x⃗,∇g(x⃗)⟩. D’où le vecteur x⃗ = (x, y) et le

gradient ∇g(x⃗) sont orthogonaux. Pourquoi ? Car la droite (privée de l’origine) d’équation
y

x
= cte est une courbe de

niveau de la fonction g et le gradient est orthogonal à cette courbe de niveau.

Exercice 6. On dit qu’une fonction f : R2 → R, x = (x1, x2) 7→ f(x) est homogène de degré α ∈ R si

∀t ∈ R∗, ∀x ∈ R2, f(tx) = tαf(x).

Montrer que, si f est de classe C1 et homogène de degré α, alors

1. les dérivées partielles ∂1f et ∂2f sont homogènes de degré α− 1 ;

2. pour tout x ∈ R2, x1∂1f(x) + x2∂2f(x) = αf(x).

1. Soit t ∈ R∗. Les deux fonctions définies par g(x) = f(tx) et h(x) = tαf(x) sont égales et de classe C1. Leurs dérivées
partielles :

∂ig(x) = t∂if(tx) et ∂ih(x) = tα∂if(x)

sont égales pour tout t ∈ R∗, d’où (en divisant par t) :

∀t ∈ R∗, ∀x ∈ R2, ∂if(tx) = tα−1∂if(x).

Chaque dérivée partielle est donc homogène de degré α− 1.

2. Soit x ∈ R2. Les deux fonctions définies par G(t) = f(tx) et H(t) = tαf(x) sont égales et dérivables. Leurs dérivées

G′(t) =
2∑

i=1

d(txi)

dt
∂if(tx) =

2∑
i=1

xi∂if(tx) et H′(t) = αtα−1f(x)

sont égales pour tout t ∈ R∗, donc en particulier pour t = 1 :

2∑
i=1

xi∂if(x) = αf(x).

Exercice 7 (Une équation aux dérivées partielles). En passant en coordonnées polaires, déterminer toutes les
fonctions f de R2 \ {(0, 0)} vers R de classe C1 telles que :

∀(x, y) ̸= (0, 0), x
∂f

∂y
− y

∂f

∂x
= 0.



Soit, pour tout r > 0 et tout φ ∈ R, F (r, φ) = f(r cosφ, r sinφ). La fonction F est de classe C1 sur ]0,+∞[×R car c’est la
composée f ◦M de deux fonctions de classe C1 : la fonction f et la fonction M : (r, φ) 7→ (x, y) = (r cosφ, r sinφ). De plus,

∂F

∂φ
=

∂f

∂x

∂x

∂φ
+

∂f

∂y

∂y

∂φ
= −r sin(φ)

∂f

∂x
+ r cos(φ)

∂f

∂y
= −y

∂f

∂x
+ x

∂f

∂y

grâce à la règle de la châıne.

D’où x
∂f

∂y
− y

∂f

∂x
= 0 ⇐⇒

∂F

∂φ
= 0 ⇐⇒ F (r, φ) = k(r), où k est une fonction de classe C1 sur ]0,+∞[.

Exercice 8. 1. Déterminer le(s) point(s) critique(s) de la fonction f définie sur R2 par

f(x, y) = x2 + xy + y2 − 3x− 6y.

En chaque point critique, préciser s’il y a un extremum local, si c’est un minimum ou un maximum et
s’il est global.

2. Déterminer l’ensemble de définition de

f(x, y) = x ln2 x+ xy2.

Étudier les points critiques de la fonction f , ses extrema locaux et ses extrema globaux.

Exercice 9. Déterminer tous les extrema locaux de la fonction

f : R2 → R, (x, y) 7→ sin(xy).

Pour chacun d’entre eux, préciser si c’est un minimum ou un maximum et s’il est global.

Analyse : R2 est un ouvert et la fonction f est de classe C1, d’où, s’il y a un extremum local en point (x, y) ∈ R2, alors (x, y) est
un point critique de f :

∇f(x, y)(0, 0) ⇐⇒


∂1f(x, y) = y cos(xy) = 0

et

∂2f(x, y) = x cos(xy) = 0

⇐⇒


cos(xy) = 0

ou

x = y = 0

⇐⇒


∃p ∈ Z, xy = π

2
+ pπ

ou

(x, y) = (0, 0)

.

Les points critiques de f sont donc :

— l’origine (0, 0) ;

— les points de la réunion ∪
p∈Z

Hp des hyperboles Hp d’équation xy = π
2
+ pπ.

Synthèse : f(0, 0) = 0 et, au voisinage de (0, 0) : f(0 + h, 0 + k) = sin(hk) est strictement positif si hk > 0 ou strictement
négatif si hk < 0. Il n’y a donc pas d’extremum local en (0, 0).

Sur chaque hyperbole Hp, f(x, y) = sin
(
π
2
+ pπ

)
= (−1)p :

— si p est pair, alors f(x, y) = 1 qui est un maximum global car ∀(x, y) ∈ R2, sin(xy) ≤ 1 ;

— si p est impair, alorsf(x, y) = −1 qui est un minimum global car ∀(x, y) ∈ R2, sin(xy) ≥ −1.

Exercice 10. On souhaite déterminer les fonctions f : R2 → R, de classe C1, vérifiant l’équation suivante :

∀(x, y, t) ∈ R3, f(x+ t, y + t) = f(x, y) (⋆)

1. Démontrer que, si f ∈ C1(R2,R) vérifie (⋆), alors :

∀(x, y) ∈ R2,
∂f

∂x
(x, y) +

∂f

∂y
(x, y) = 0.



2. Résoudre l’équation aux dérivées partielles précédente et en déduire l’ensemble des solutions de (⋆).

1. Soit (x, y) ∈ R2. La fonction M :,R → R2, t 7→ M(t) = (x+ t, y + t) est de classe C1. La fonction f ◦M est donc aussi C1

par composition de fonctions C1. Or cette fonction f ◦M est constante d’après (⋆), donc sa dérivée en 0 est nulle :

0 = (f ◦M)′(t) =
d(x+ t)

dt
(t)

∂f

∂x
(x+ t, y + t) +

d(y + t)

dt
(t)

∂f

∂y
(x+ t, y + t) =

∂f

∂x
(x+ t, y + t) +

∂f

∂y
(x+ t, y + t)

pour tout t ∈ R, d’après la règle de la châıne. En particulier, si t = 0, alors ∂f
∂x

(x, y) + ∂f
∂y

(x, y).

2. On effectue le changement de corrdonnées (u, v) = (x+y, x−y) équivalent à (x, y) = (u+v
2

, u−v
2

). On pose F (u, v) = f(x, y).

La fonction F est C1 car c’est la composée de deux fonctions C1. On calcule les dérivées partielles de f en fonction de
celles de F grâce à la règle de la châıne :

∂f

∂x
=

∂F

∂u

∂u

∂x
+

∂F

∂v

∂v

∂x
=

∂F

∂u
+

∂F

∂v
∂f

∂y
=

∂F

∂u

∂u

∂y
+

∂F

∂v

∂v

∂y
=

∂F

∂u
−

∂F

∂v

.

On résout l’équation aux dérivées partielles (EDP) :

∀(x, y) ∈ R2,
∂f

∂x
+

∂f

∂y
= 0 ⇐⇒ ∀(u, v) ∈ R2,

∂F

∂u
= 0

⇐⇒ ∀(u, v) ∈ R2, F (u, v) = C(v), où C est de classe C1

⇐⇒ ∀(x, y) ∈ R2, f(x, y) = C(x− y)

Si une fonction f vérifie (⋆), alors elle est une solution de l’EDP, d’où f(x, y) = C(x− y). Réciproquement, toute fonction
de cette forme vérifie (⋆) car

∀(x, y, t) ∈ R3, f(x+ t, y + t) = C(x+ t− (y + t)) = C(x− y) = f(x, y).


