TD5. Décidabilité

Exercice 1. Problèmes d'optimisations

Pour chacun des problèmes d'optimisation ci-dessous, écrire le problème de décision associé.

1. Sac à Dos
$$\left\{ \begin{array}{l} \text{Entrée}: \quad \text{Une liste d'objets } (p_i,v_i)_{1 \leq i \leq n} \text{ et une capacité maximale } C \in \mathbb{N}^*. \\ \text{Sortie}: \quad \max_{I \subseteq \{1,\dots,n\}} \left\{ \sum_{i \in I} v_i \; \middle| \; \sum_{i \in I} p_i \leq C \right\}. \end{array} \right.$$

2. Couverture Sommets
$$\left\{ \begin{array}{l} \text{Entr\'ee}: & G = (S,A) \text{ un graphe non orient\'e fini.} \\ \text{Sortie}: & \min_{C \subseteq S} \left\{ |C| \mid \forall (u,v) \in A, \; (u \in C) \text{ ou } (v \in C) \right\}. \end{array} \right.$$

Exercice 2. Stabilité de la classe des langages décidables

On dit que L est une langage décidable s'il existe une machine m telle que L(m) = L. Soit L_1 et L_2 deux langages décidables.

- **1.** Montrer que $L_1 \cup L_2$ est décidable.
- **2.** Montrer que $L_1.L_2$ est décidable.
- 3. Montrer que la classe des langages décidables n'est pas stables par union dénombrable.

Exercice 3. Dénombrement

Montrer l'existence d'un problème non décidable par un argument diagonale.

Exercice 4. Réductions

Montrer que les problèmes suivants sont indécidables.

ArrêtUniv { Entrée : <m> la sérialisation d'une machine Sortie : Est ce que m s'arrête sur toutes ses entrées ?
ArrêtExiste { Entrée : <m> la sérialisation d'une machine Sortie : Est ce qu'il existe une entrée e tq m e s'arrête ?

3. ArrêtSimult $\left\{ \begin{array}{l} \text{Entr\'ee}: & < \texttt{m1}> \ \text{et} < \texttt{m2}> \ \text{la s\'erialisation de deux machines} \\ \text{Sortie}: & \text{Est ce que } L(\texttt{m1}) = L(\texttt{m2}) \end{array} \right. ?$

Exercice 5. Décidables ? Indécidables ?

Pour chacun des problèmes suivants, dire s'ils sont décidables ou non. Le prouver.

1. $\Pi_1 \left\{ \begin{array}{l} {\rm Entr\'{e}}: < m > {\rm la\ s\'{e}} {\rm rialisation\ d'une\ machine} \\ {\rm Sortie}: {\rm Est-ce\ que\ m\ d\'{e}} {\rm finit\ une\ fonction\ auxiliaire\ ?} \end{array} \right.$

2. Π_2 { Entrée : <m> la sérialisation d'une machine de type int -> int Sortie : Est-ce que m 0 > 0 ?

3. $\Pi_3 \left\{ \begin{array}{ll} \text{Entr\'ee}: & <\!\!\!\!\text{m}\!\!\!> \text{la s\'erialisation d'une machine} \\ \text{Sortie}: & \text{Est-ce que } L(\mathtt{m}) \text{ contient un nombre pair de mots } ? \end{array} \right.$

4. Π_4 Entrée : <m> la sérialisation d'une machine Sortie : Est-ce que m contient une boucle while ?