Corrigé du TD6

Exercice 1.

Supposons qu'il existe un problème Π tel que Π NP-difficile et $\Pi \in P$. Montrons qu'alors P = NP, c'est-à-dire $NP \subseteq P$ (puisque l'autre inclusion est vérifiée).

Soit $\Pi' \in NP$. Comme Π est NP-difficile, $\Pi' \leq_P \Pi$. Et puisque $\Pi \in P$, $\Pi' \in P$. D'où $NP \subseteq P$.

Exercice 2. Coloration de graphe Corrigé en cours.

Exercice 3. Problème du Sac à Dos

Montrons que le problème du Sac à dos est NP-complet.

Montrons que Sac à dos \in NP.

Soit E l'ensemble des entrées du problème Sac à Dos. On pose l'ensemble de certificats $C = \mathcal{P}(\mathbb{N})$, et on définit la fonction de vérification $g : E \times C \to \{V, F\}$ qui étant donnée une instance $(\{p_1, \ldots, p_n\}, \{v_1, \ldots, v_n\}, W, C)$ de Sac à Dos et un certificat $I \in \mathcal{P}(\mathbb{N})$, renvoie V ssi $\sum_{i \in I} v_i \geq W$ et $\sum_{i \in I} p_i \leq C$.

La fonction g est calculable en O(n), et est donc polynomiale en la taille de l'entrée.

De plus, par définition, une entrée e de Sac à Dos est positive ssi il existe $I \in \mathcal{P}(\mathbb{N})$ tel que g(e, I) renvoie V. Le certificat associé a alors une taille O(n), donc polynomiale en la taille de e.

Ainsi, Sac à Dos \in NP.

Montrons que Sac à dos est NP-difficile par réduction depuis Sous-Ensemble, c'est-à-dire Sous-Ensemble \leq_P Sac à Dos.

Soit $E_1 = (\{e_1, \dots e_n\}, W_1)$ une instance de Sous-Ensemble.

On construit l'instance $E_2 = (\{p_1, \dots, p_n\}, \{v_1, \dots, v_n\}, W_2, C)$ de Sac à Dos définie par :

- $\forall i \in \{1, ..., n\}, p_i = e_i$
- $\bullet \ \forall i \in \{1,\ldots,n\}, v_i = e_i$
- $W_2 = W_1$
- \bullet C = W

Montrons que $E_1 \in \text{Sous-Ensemble}^+$ ssi $E_2 \in \text{Sac à Dos}^+$.

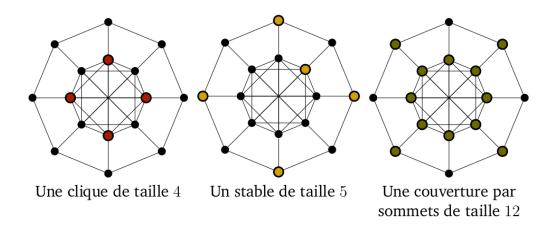
 \implies : Si $E_1 \in$ Sous-Ensemble⁺, alors il existe $I \subseteq \{1, ..., n\}$ tel que $\sum_{i \in I} e_i = W_1$. Donc $\sum_{i \in I} p_i \ge W_1 = C$ et $\sum_{i \in I} v_i \le W_1 = W_2$. Ainsi, $E_2 \in$ Sac à Dos⁺.

 \Leftarrow : Si $E_2 \in \text{Sac à Dos}^+$. Alors il existe $I \subseteq \{1, \ldots, n\}$ tel que $\sum_{i \in I} v_i \geq W_2$ donc $\sum_{i \in I} e_i \geq W_1$ et $\sum_{i \in I} p_i \leq C$ donc $\sum_{i \in I} e_i \leq W_1$. Finalement, $\sum_{i \in I} e_i = W_1$ donc $E_1 \in \text{Sous-Ensemble}^+$.

Ainsi, Sous-Ensemble \leq_P Sac à Dos. Comme Sous-Ensemble est NP-difficile, Sac à Dos est NP-difficile. Comme Sac à Dos \in NP, on a finalement Sac à Dos NP-complet.

Exercice 4. Clique, Stable et couverture par des sommets

1.



- **2.** Soit G = (S, A) un graphe non orienté quelconque. \emptyset est à la fois un stable et une clique de G. S est une couvrerture des sommets de G.
- 3. La réduction a été faite en cours, il s'agit d'utiliser le graphe complémentaire.
- **4.** Montrons que le problème Couv.Sommet \leq_P Stable (on utilisera ensuite la transitivité de \leq_P pour conclure).

Soit (G = (S, A), K) une instance de Couv.Sommet. On considère alors (G, K - |S|) une instance de Stable.

Montrons que G admet une couverture des sommets de taille $\leq K$ ssi G admet un stable de taille $\leq |S| - K$.

 \implies :Suposons que G admette une couverture des sommets S_1 de taille $|S_1| \leq K$. On considére $S_2 = S \setminus S_1$. Alors $|S_2| = |S| - |S_1| \geq |S| - K$.

Montrons que S_2 est un stable de G. Supposons par l'absurde que S_2 n'est pas un stable. Alors il existe $(u,v) \in S_2^2$ tel que $\{u,v\} \in A$. Mais alors, comme S_1 est une couverture des sommets, $u \in S_1$ ou $v \in S_1$, absurde. Ainsi, S_2 est un stable, et (G,K-|S|) est une instance positive du problème Stable.

 \iff : Réciproquement, si G admet un stable S_2 de taille $|S_2| \ge |S| - K$, alors $S_1 = S \setminus S_2$ est de taille $|S_1| \le K$. Montrons que S_1 est une couverture des sommets.

Soit $\{u, v\} \in A$. Alors comme S_2 est stable, $u \notin S_2$ ou $v \notin S_2$, donc $u \in S_1$ ou $v \in S_1$, d'où S_1 couverture des sommets.

De plus, la réduction proposée est bien polynomiale.

Ainsi, Couv.Sommets \leq_P Stable. D'après la question précédente, Stable \leq_P Clique, d'où par transitivité de \leq_P Couv.Sommets \leq_P Clique.

On fait exactement la même transformation pour montrer Stable \leq_P Couv.Sommets et conclure Clique \leq_P Couv.Sommets.

Réduction Polynomiale de 3-SAT à Clique.

6. Montrons que 3-SAT \leq_P Clique.

Soit $\varphi = C_1 \wedge C_2 \wedge \cdots \wedge C_n$ une instance de Clique. On crée une instance de Clique composée du graphe G = (S, A) tel que défini dans l'énoncé, et on pose K = m.

Montrons que φ est satisfiable ssi G admet une Clique de taille $\geq m$.

 \implies : Supposons φ satisfiable. Soit v un modèle de φ . Pour toute clause $C_i = l_{i,1} \vee l_{i,2} \vee l_{i,3}$, il existe $j_i \in \{1,2,3\}$ tel que $\bar{v}(l_{i,j_i}) = V$.

On pose $S' = \{(i, j_i) \mid i \in \{1, ..., m\}\}$. Par construction, |S'| = m. Montrons que S' est une clique.

Soit (i, j_i) et $(i', j_{i'})$ deux sommets distincts de S'. Supposons par l'absurde que l'arc $\{(i, j_i), (i', j_{i'})\} \notin A$. Alors, d'après la définition de A, $l_{i,j_i} = \neg l_{i',j_{i'}}$. Comme $\bar{v}(l_{i,j_i}) = \bar{v}(l_{i',j_{i'}})$, c'est absurde.

 \Leftarrow : Réciproquement, supposons que G admet une clique S' de taille $\geq m$. Soit (i,j) et (i',j') deux sommets distincts de S'. Puisque l'arête $\{(i,j),(i',j')\}$ existe, nécessairement, $i \neq i'$. On en déduit que S' comporte exactement un sommet (i,j_i) par clause C_i . On définit alors la valuation partielle $v:\{p_1,\ldots,p_n\} \to \{V,F\}$ par :

$$v(p) = \begin{cases} V & \text{s'il existe } (i,j) \in S' \text{ tq } p = l_{i,j} \\ F & \text{s'il existe } (i,j) \in S' \text{ tq } p = \neg l_{i,j} \end{cases}$$

La valuation ainsi créée est bien définie car il n'est pas possible que S' comporte un littéral et sa négation (les sommets ne seraient pas reliés).

De plus, v satisfait alors chaque clause, donc φ est satisfiable.

Enfin la réduction est polynomiale puisque $|\varphi|=O(m)$ et $|G|\leq 3m+m^2=O(m^2)$. Ainsi, 3-SAT \leq_P Clique.