Lycée Claude Bernard MPI Daphné Kany

TPS8. Analyse lexicale et syntaxique en OCaml

Le but de ce TP est de construire une fonction evalue : string -> int prenant en entrée
une chaine de caractére représentant une expression arithmétique et renvoyant la valeur
de cette expression. Ainsi, evalue "((-75+9)* (7-9))" renvoie 132. Pour simplifier, une
expression arithmétique ne pourra faire intervenir que des entiers, les opérateurs binaires
+, *, -, / et l'opérateur unaire -.

Pour ce faire, on décompose le travail en trois étapes :

1. L’analyse lexicale qui consiste a découper la chaine initiale en une liste de lexémes
(en anglais tokens).

2. L’analyse syntaxique, qui a partir de la liste de lexéme précédemment obtenue,
construit un arbre syntaxique permettant de savoir si la suite de lexémes est bien
formeée.

3. L’évaluation permettra finalement d’associer une valeur a un arbre syntaxique.

I. L’analyse lexicale

Dans ce TP, on appelle chaine d’expression arithmétique toute chaine ne faisant intervenir
que les caractéres ' (', '), '+' , 'x' '_' 1/t les chiffres et le caractére espace. Par
exemple "45 (+)7-" est une chaine d’expression arithmétique mais pas "45*8*x".

L’objectif de cette partie est de construire une fonction qui décompose une chaine d’expression
arithmétique en une liste de lexémes en ignorant les espaces. Si ce n’est pas possible elle
renverra l’exception Lexical_error (a définir).

Les lexémes sont définis par le type suivant :

type token = CONST of int | EOF | LPAR | RPAR | PLUS | TIMES | DIV
| MINUS

Le lexéme LPAR désigne une parenthése ouvrante, le lexéme RPAR une parenthése fermante
et le lexéme EOF la fin de la chaine analysée.

1. Ecrire une fonction get_number : string -> int -> token * int. Elle prend en en-
trée une chaine s et un entier i tel que s. [i] existe et est un chiffre. Elle renvoie le couple
(CONST n, j) ou n est le nombre commengant a la position i dans s, et j est 'indice du
dernier chiffre de n.

2. Ecrire une fonction first_token : string -> int -> token * int prenant en entrée
une chaine s et un indice i dans cette chaine et renvoyant le premier lexéme reconnu a
partir de 'indice i dans s et 'indice j de s correspondant a l'indice du dernier caractére
formant ledit lexéme. Si aucun lexéme ne peut étre reconnu & partir de 'indice i, on
lévera I'exception Lexical_error.

3. En déduire une fonction lexer : string -> token list transformant une chaine de
caracteres en la liste des lexémes correspondante si la chaine est une chaine d’expression
arithmétique et levant Lexical_error sinon.

Lycée Claude Bernard MPI Daphné Kany

II. L’analyse syntaxique

Maintenant que nous avons identifié la liste des lexémes d’une chaine d’expression arith-
métique, on cherche & savoir si cette derniére est bien formée. Pour ce faire, on se dote de

la grammaire G suivante, décrivant les formules arithmétiques syntaxiquement correctes
(les variables sont S, E, B et O) :

S — F EOF

E — CONST n | MINUS E | LPAR B RPAR
B—-FOF

O — PLUS | MINUS | TIMES | DIV

L’objectif de cette partie est de construire une fonction qui associe a une liste de lexémes
provenant de 1’analyse lexicale d’une chaine d’expression arithmétique son arbre syntax-
ique selon cette grammaire si il existe et qui léve I'exception Syntax_error (& définir) sinon.

Un arbre syntaxique pour une expression arithmétique aura le type ae définit par :

type operation = Plus | Minus | Times | Div
type ae = Const of int | Bin of operation * ae * ae | Neg of ae

4. Ecrire trois fonctions mutuellement récursives de signatures :

parser_E : token list -> ae * token list
parser_B : token list -> ae * token list
parser_0 : token list -> operation * token list

La fonction parser_E tl renvoie I'arbre syntaxique du plus grand préfixe p de t1 qui est
un mot dérivé du non terminal F et le reste de la liste de lexémes & analyser une fois
que ceux utilisés pour former p ont été supprimés de t1. La fonction parser_B fait de
méme mais pour le non terminal B. La fonction parser_0 fait de méme sauf que le pre-
mier élément du couple renvoyé est un objet de type operation. Dans chaque cas, en cas
d’impossibilité, Syntax_error sera levée.

5. En déduire une fonction parser : token list -> ae renvoyant l’arbre syntaxique as-
socié & une liste de lexémes si celle-ci forme un mot engendré par G et levant Syntax_error
sinon.

IT1. L’évaluation

6. Ecrire une fonction evaluate : string -> int permettant d’évaluer une chaine a
condition qu’il s’agisse d’une chaine d’expression arithmétique correctement formée.

