
Lycée Claude Bernard MPI Daphné Kany

TP8. Analyse lexicale et syntaxique en OCaml
Le but de ce TP est de construire une fonction evalue : string -> int prenant en entrée
une chaîne de caractère représentant une expression arithmétique et renvoyant la valeur
de cette expression. Ainsi, evalue "((-75+9)* (7-9))" renvoie 132. Pour simplifier, une
expression arithmétique ne pourra faire intervenir que des entiers, les opérateurs binaires
+, *, -, / et l’opérateur unaire -.

Pour ce faire, on décompose le travail en trois étapes :

1. L’analyse lexicale qui consiste à découper la chaîne initiale en une liste de lexèmes
(en anglais tokens).

2. L’analyse syntaxique, qui à partir de la liste de lexème précédemment obtenue,
construit un arbre syntaxique permettant de savoir si la suite de lexèmes est bien
formée.

3. L’évaluation permettra finalement d’associer une valeur à un arbre syntaxique.

I. L’analyse lexicale

Dans ce TP, on appelle chaîne d’expression arithmétique toute chaîne ne faisant intervenir
que les caractères '(', ')', '+' , '*', '-', '/', les chiffres et le caractère espace. Par
exemple "45 (+)7-" est une chaîne d’expression arithmétique mais pas "45*8*x".
L’objectif de cette partie est de construire une fonction qui décompose une chaîne d’expression
arithmétique en une liste de lexèmes en ignorant les espaces. Si ce n’est pas possible elle
renverra l’exception Lexical_error (à définir).
Les lexèmes sont définis par le type suivant :

type token = CONST of int | EOF | LPAR | RPAR | PLUS | TIMES | DIV
| MINUS

Le lexème LPAR désigne une parenthèse ouvrante, le lexème RPAR une parenthèse fermante
et le lexème EOF la fin de la chaîne analysée.

1. Écrire une fonction get_number : string -> int -> token * int. Elle prend en en-
trée une chaîne s et un entier i tel que s.[i] existe et est un chiffre. Elle renvoie le couple
(CONST n, j) où n est le nombre commençant à la position i dans s, et j est l’indice du
dernier chiffre de n.

2. Écrire une fonction first_token : string -> int -> token * int prenant en entrée
une chaîne s et un indice i dans cette chaîne et renvoyant le premier lexème reconnu à
partir de l’indice i dans s et l’indice j de s correspondant à l’indice du dernier caractère
formant ledit lexème. Si aucun lexème ne peut être reconnu à partir de l’indice i, on
lèvera l’exception Lexical_error.

3. En déduire une fonction lexer : string -> token list transformant une chaîne de
caractères en la liste des lexèmes correspondante si la chaîne est une chaîne d’expression
arithmétique et levant Lexical_error sinon.

1

Lycée Claude Bernard MPI Daphné Kany

II. L’analyse syntaxique

Maintenant que nous avons identifié la liste des lexèmes d’une chaîne d’expression arith-
métique, on cherche à savoir si cette dernière est bien formée. Pour ce faire, on se dote de
la grammaire G suivante, décrivant les formules arithmétiques syntaxiquement correctes
(les variables sont S, E, B et O) :

S → E EOF
E → CONST n | MINUS E | LPAR B RPAR
B → E O E
O → PLUS | MINUS | TIMES | DIV

L’objectif de cette partie est de construire une fonction qui associe à une liste de lexèmes
provenant de l’analyse lexicale d’une chaîne d’expression arithmétique son arbre syntax-
ique selon cette grammaire si il existe et qui lève l’exception Syntax_error (à définir) sinon.

Un arbre syntaxique pour une expression arithmétique aura le type ae définit par :

type operation = Plus | Minus | Times | Div
type ae = Const of int | Bin of operation * ae * ae | Neg of ae

4. Écrire trois fonctions mutuellement récursives de signatures :

parser_E : token list -> ae * token list
parser_B : token list -> ae * token list
parser_O : token list -> operation * token list

La fonction parser_E tl renvoie l’arbre syntaxique du plus grand préfixe p de tl qui est
un mot dérivé du non terminal E et le reste de la liste de lexèmes à analyser une fois
que ceux utilisés pour former p ont été supprimés de tl. La fonction parser_B fait de
même mais pour le non terminal B. La fonction parser_O fait de même sauf que le pre-
mier élément du couple renvoyé est un objet de type operation. Dans chaque cas, en cas
d’impossibilité, Syntax_error sera levée.

5. En déduire une fonction parser : token list -> ae renvoyant l’arbre syntaxique as-
socié à une liste de lexèmes si celle-ci forme un mot engendré par G et levant Syntax_error
sinon.

III. L’évaluation

6. Écrire une fonction evaluate : string -> int permettant d’évaluer une chaîne à
condition qu’il s’agisse d’une chaîne d’expression arithmétique correctement formée.

2

