Relation de dispersion

On a obtenu l'équation de propagation :

$$\Delta \vec{E} - \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t^2} = \mu_o \frac{\partial \vec{j}}{\partial t}$$

Reprendre les hypothèses du cours et déduire $\frac{\partial \vec{j}}{\partial t}$ du PFD appliqué à un électron. Retrouver alors la relation de dispersion.

PFD appliqué à l'Electron:

$$m \frac{d\vec{v}}{dt} = -e\vec{E}$$
 $= -ne \frac{d\vec{v}}{dt} = -ne \left(-\frac{e\vec{E}}{m}\right)$

En suposant $\vec{J} = -ne \vec{v} - \left(soit en négligeant la contribution des cations)

 $= \frac{d\vec{J}}{dt} = \frac{ne^2\vec{E}}{m}$

Soit, en poant $w_p^2 = \frac{ne^2}{mz_0^2}$$

On utilize ensuite l'iquation de propagation:

$$\Delta \vec{E} - \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} = \frac{1}{2} \frac{\partial \vec{J}}{\partial t}$$

$$+ \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} = \frac{1}{2} \frac{\partial \vec{J}}{\partial t}$$
The ensuite is relation de dispersion

For $\vec{E} = \vec{E}_0 = i(\omega t - t^2 \cdot \vec{P})$:

$$- t^2 \vec{E} + \frac{\omega^2}{c^2} \vec{E} = \frac{\omega^2}{c^2} \vec{E}$$

$$\Rightarrow t^2 = \frac{\omega^2}{c^2} - \frac{\omega^2}{c^2}$$

Ordre de grandeur

Estimer ω_p et f_p pour la ionosphère. On donne :

$$n = 10^{10} \text{m}^{-3}$$
; $m = 9, 1.10^{-31} \text{kg}$; $\varepsilon_o = 8, 85.10^{-12} \text{F.m}^{-1}$

Situer le résultat dans le spectre électromagnétique.

A.N:
$$W_p = \left(\frac{10^{10} \cdot (16 \cdot 10^{-19})^2}{9, 1 \cdot 10^{-31} \cdot 8,85. 10^{-12}}\right)^{1/2}$$
 $\Rightarrow W_p = 5,6.10^6 \text{ rad. s}^{-1}$

$$\int_{P} = \frac{W_p}{2\pi} \qquad \Rightarrow \int_{P} = 9.10^2 \text{ kHz} \qquad (\sim 1 \text{ MHz})$$

$$V_s = \frac{10^{10} \cdot (10^{-19})^2}{9, 1 \cdot 10^{-31} \cdot 8,85. 10^{-12}}\right)^{1/2}$$

$$V_s = \frac{10^{10} \cdot (10^{-19})^2}{9, 1 \cdot 10^{-31} \cdot 8,85. 10^{-12}}$$

$$V_s = \frac{10^{10} \cdot (10^{-19})^2}{9, 1 \cdot 10^{-31} \cdot 8,85. 10^{-12}}$$

$$V_s = \frac{10^{10} \cdot (10^{-19})^2}{9, 1 \cdot 10^{-31} \cdot 8,85. 10^{-12}}$$

$$V_s = \frac{10^{10} \cdot (10^{-19})^2}{9, 1 \cdot 10^{-31} \cdot 8,85. 10^{-12}}$$

$$V_s = \frac{10^{10} \cdot (10^{-19})^2}{9, 1 \cdot 10^{-31} \cdot 8,85. 10^{-12}}$$

$$V_s = \frac{10^{10} \cdot (10^{-19})^2}{9, 1 \cdot 10^{-31} \cdot 8,85. 10^{-12}}$$

$$V_s = \frac{10^{10} \cdot (10^{-19})^2}{9, 1 \cdot 10^{-31} \cdot 8,85. 10^{-12}}$$

$$V_s = \frac{10^{10} \cdot (10^{-19})^2}{9, 1 \cdot 10^{-31} \cdot 8,85. 10^{-12}}$$

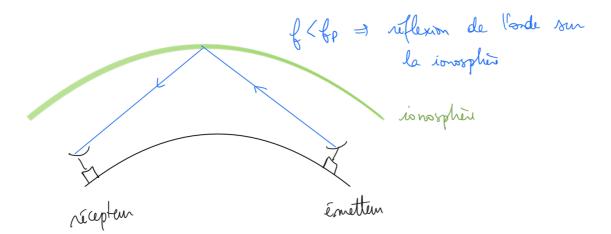
$$V_s = \frac{10^{10} \cdot (10^{-19})^2}{9, 1 \cdot 10^{-31} \cdot 8,85. 10^{-12}}$$

$$V_s = \frac{10^{10} \cdot (10^{-19})^2}{9, 10^{-19} \cdot (10^{-19})^2}$$

$$V_s = \frac{10^{10} \cdot (10^{-19})^2}{9, 10^{-19} \cdot (10^{-$$

Expérience de Marconi

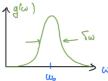
Faire un schéma illustrant la première liaison transatlantique en 1901 (fréquences de l'ordre de la centaine de $\rm kHz$).



Vitesse de propagation du paquet d'ondes

On considère un paquet d'ondes :

$$\underline{\vec{E}}(z,t) = \int_0^\infty g(\omega) \, e^{i(\omega t - kz)} d\omega \, \vec{u}_x$$



avec $g(\omega)$ fonction à valeurs réelles positives, non nulle sur une largeur $\delta\omega$ autour de la pulsation ω_o .

Montrer à l'aide d'un développement de Taylor à l'ordre 1 que le champ $\underline{\vec{E}}$ s'écrit :

$$\underline{\vec{E}}(z,t) = e^{i(\omega_o t - k_o z)} \int_0^\infty g(\omega) e^{i((\omega - \omega_o)(t - z/v_g))} d\omega \ \vec{u}_x$$

Le signal est de la forme : OPPH à ω_o * enveloppe. La partie réelle de cette enveloppe est donnée par:

$$e(z,t) = \int_0^\infty g(\omega) \cos((\omega - \omega_o)(t - z/v_g)) d\omega$$

- Que vaut e(t) pour $t z/v_g = 0$?
- Que vaut e(t) pour $t z/v_g$ suffisamment grand?
- Conclusion.

On sout:
$$\xi(x,t) = e^{i\omega x} \int_0^{\infty} g(\omega) e^{i(\omega-\omega)t} e^{-ikz} d\omega$$

solution de ω

(relation de ω

 $z = u_g + correspond au maximum de <math>c(z_1 + 1)$ 3

Vitesse de propagation de l'énergie électromagnétique dans le plasma

On se place dans le cas où $\omega > \omega_p$. On a dans le plasma :

$$\underline{\vec{v}}_{-} = \frac{-e}{mi\omega}\underline{\vec{E}}$$

$$\underline{\vec{E}} = E_{o}e^{i(\omega t - kz)}\vec{u}_{x}$$

$$\underline{\vec{B}} = \frac{kE_{o}}{\omega}e^{i(\omega t - kz)}\vec{u}_{y}$$

avec $k^2 = \frac{\omega^2 - \omega_p^2}{c^2}$ et $\omega_p^2 = \frac{ne^2}{m\varepsilon_o}$

- 1. Déterminer $\langle \vec{\Pi} \rangle$.
- 2. Déterminer < u> et $< e_c> = n\frac{1}{2}m < v_-^2>$ valeur moyenne de la densité volumique en énergie cinétique des électrons.
- 3. Vérifier que :

$$<\vec{\Pi}>=(< u>+< e_c>)v_g\vec{u}_z$$

Commenter.

1)
$$(\vec{\pi}) = \frac{1}{2\mu}$$
, $e^{i(\omega t - kz)}$

$$= \frac{k c_0^2 \epsilon}{2\mu_0 \omega \epsilon} \vec{\omega}_2^2$$

$$= \frac{k c_0^2 \epsilon}{2\mu_0 \omega \epsilon} \vec{\omega}_2^2$$

$$= \frac{1}{2} \left(\frac{\epsilon}{2} \frac{\epsilon^2}{2} + \frac{k^2 \epsilon_0^2}{2} \frac{\epsilon^2}{2} + \frac{k^2 \epsilon_0^2}{2} \right)$$

$$= \frac{1}{2} \left(\frac{\epsilon}{2} \frac{\epsilon^2}{2} + \frac{k^2 \epsilon_0^2}{2} \frac{\epsilon^2}{2} \right)$$

$$= \frac{\epsilon}{2} \frac{\epsilon^2}{2} \left(\frac{1}{2} + \frac{k^2 c_0^2}{2} + \frac{k^2 c_0^2}{2} \right)$$

$$= \frac{\kappa_0 c_0^2}{2} \frac{\omega_0^2}{\omega^2}$$

$$= \frac{\epsilon_0 c_0^2}{2} \frac{\omega_0^2}{2}$$

$$= \frac{\epsilon_0 c_0^2}{2} \left(\frac{1}{2} + \frac{k^2 c_0^2}{2} + \frac{\omega_0^2}{2} \right)$$

$$= \frac{\epsilon_0 c_0^2}{2} \left(\frac{1}{2} + \frac{\omega_0^2 c_0^2}{2} + \frac{\omega_0^2}{2} \right)$$

$$= \frac{\epsilon_0 c_0^2}{2} \left(\frac{1}{2} + \frac{\omega_0^2 c_0^2}{2} + \frac{\omega_0^2}{2} \right)$$

$$= \frac{\epsilon_0 c_0^2}{2} \left(\frac{1}{2} + \frac{\omega_0^2 c_0^2}{2} + \frac{\omega_0^2}{2} \right)$$

$$= \frac{\epsilon_0 c_0^2}{2} \left(\frac{1}{2} + \frac{\omega_0^2 c_0^2}{2} + \frac{\omega_0^2}{2} \right)$$

$$= \frac{\epsilon_0 c_0^2}{2} \left(\frac{1}{2} + \frac{\omega_0^2 c_0^2}{2} + \frac{\omega_0^2}{2} \right)$$

$$= \frac{\epsilon_0 c_0^2}{2} \left(\frac{1}{2} + \frac{\omega_0^2 c_0^2}{2} + \frac{\omega_0^2}{2} \right)$$