CONCOURS COMMUN MINES-PONTS 2021

Épreuve de mathématiques I (corrigé)

Variables aléatoires entières symétriques à forte dispersion

Questions de cours

- 1. On dit que X est d'espérance finie si la série $\sum_{n\geqslant 0} x_n \mathbf{P}(X=x_n)$ converge absolument, c'est-à-dire si et seulement si la série $\sum_{n\geqslant 0} |x_n| \mathbf{P}(X=x_n)$ converge (une probabilité est positive, donc $|\mathbf{P}(X=x_n)| = \mathbf{P}(X=x_n)$).
 - Notons que d'après le théorème du transfert, |X| est d'espérance finie si et seulement si la série $\sum_{n\geqslant 0}|x_n|\mathbf{P}(X=x_n)$ converge absolument. Ce qui, d'après le rappel ci-dessus, équivaut au fait que X soit d'espérance finie, d'où le résultat.
- 2. Sous ces hypothèses, on a pour tout $n \in \mathbb{N}$: $|x_n| \mathbf{P}(X = x_n) \leq M \mathbf{P}(X = x_n)$. En effet, soit $|x_n| \leq M$, auquel cas c'est évident, soit $|x_n| > M$, auquel cas $\mathbf{P}(X = x_n) = 0$ (donc chaque membre de l'inégalité est nul, et elle reste vraie) vu que par hypothèse $\mathbf{P}(|X| > M) = 0$, et : $(X = x_n) \subseteq (|X| > M)$.
 - Or la série $\sum_{n\geqslant 0} M\mathbf{P}(X=x_n)$ converge par σ -additivité d'une probabilité, donc par comparaison de séries à termes positifs la série $\sum_{n\geqslant 0} x_n \mathbf{P}(X=x_n)$ converge absolument : d'où le résultat.

Généralités sur les variables aléatoires

- 3. On rappelle que X est d'espérance finie si et seulement si |X| l'est. Or |X| est à valeurs dans \mathbf{N} , et on sait que dans ce cas, |X| est d'espérance finie si et seulement si la série $\sum_{n\geqslant 1} \mathbf{P}(|X|\geqslant n)$ converge. Mais, dans le cas où X vérifie (\mathcal{D}_{α}) , on a : $\mathbf{P}(|X|\geqslant n)$ $\underset{n\to+\infty}{\sim} \frac{\alpha}{n}$ avec $\alpha>0$, et on sait que la série harmonique $\sum_{n\geqslant 1}\frac{1}{n}$ est divergente. Donc, par comparaison de séries à termes positifs, la série $\sum_{n\geqslant 1}\mathbf{P}(|X|\geqslant n)$ diverge aussi : ainsi |X| n'est pas d'espérance finie, et X non plus. On vient de justifier que |X| n'est pas d'espérance finie, donc la série $\sum_{n\geqslant 0}|x_n|\mathbf{P}(X=x_n)$ diverge. Or l'inégalité : $\forall n\in\mathbf{N},\ (|x_n|-1)^2\geqslant 0$ implique : $\forall n\in\mathbf{N},\ x_n^2+1\geqslant 2|x_n|$, donc d'après le théorème de comparaison de séries à termes positifs, la série $\sum_{n\geqslant 0}(x_n^2+1)\mathbf{P}(X=x_n)$ diverge également, et la série $\sum_{n\geqslant 0}x_n^2\mathbf{P}(X=x_n)$ diverge aussi (en tant que différence de la série divergente $\sum_{n\geqslant 0}(x_n^2+1)\mathbf{P}(X=x_n)$ et de la série convergente $\sum_{n\geqslant 0}\mathbf{P}(X=x_n)$). D'après le théorème du transfert, on en déduit que X^2
- 4. Puisque X est symétrique, les variables aléatoires X et -X ont même loi. D'après le principe de transfert de l'égalité en loi (théorème 1 du préambule), f(X) et f(-X) ont aussi même loi. Or f(-X) = -f(X) car f est supposée impaire, donc finalement il en résulte que f(X) et -f(X) ont même loi : cela prouve que f(X) est symétrique.

 On suppose que f(X) est d'espérance finie. Puisque f(X) et -f(X) ont même loi, leurs espé-
 - On suppose que f(X) est d'espérance finie. Puisque f(X) et -f(X) ont même loi, leurs espérances sont égales, donc : $\mathbf{E}(f(X)) = \mathbf{E}(-f(X))$. Or l'espérance est linéaire, donc : $\mathbf{E}(f(X)) = -\mathbf{E}(f(X))$. On en déduit : $\mathbf{E}(f(X)) = 0$.
- 5. On veut montrer que X + Y est symétrique. On doit montrer :

n'est pas d'espérance finie.

$$\forall z \in (X+Y)(\Omega), \quad \mathbf{P}(X+Y=z) = \mathbf{P}(-X-Y=z).$$

Soit $z \in (X + Y)(\Omega)$. On a :

$$(X+Y=z) = \bigcup_{x \in X(\Omega)} (X=x, Y=z-x).$$

Donc, par σ -additivité et indépendance des variables aléatoires X et Y:

$$\mathbf{P}(X+Y=z) = \sum_{x \in X(\Omega)} \mathbf{P}(X=x, Y=z-x) = \sum_{x \in X(\Omega)} \mathbf{P}(X=x) \mathbf{P}(Y=z-x).$$

Or X et Y sont symétriques, donc :

$$\sum_{x \in X(\Omega)} \mathbf{P}(X=x)\mathbf{P}(Y=z-x) = \sum_{x \in X(\Omega)} \mathbf{P}(-X=x)\mathbf{P}(-Y=z-x),$$

et en imitant le raisonnement fait pour (X + Y) = Z, on montre que cette somme est égale à $\mathbf{P}(-X - Y = z)$. On a donc montré :

$$\mathbf{P}(X+Y=z) = \mathbf{P}(-X-Y=z),$$

d'où le résultat.

Deux sommes de séries

6. L'application $u\mapsto \frac{z}{1-uz}$ est continue sur [0,1] en tant qu'inverse d'une fonction continue ne s'annulant par sur [0,1]: en effet, si $u\in [0,1]$, alors 1-uz=0 si et seulement si uz=1, si et seulement si $z\neq 0$ et $u=\frac{1}{z}$; mais comme $|z|\leqslant 1$ par hypothèse, cela implique : $|u|\geqslant 1$. Comme $u\in [0,1]$, ce n'est possible que si u=1, mais dans ce cas on a z=1: absurde.

Donc, d'après le théorème fondamental de l'analyse, $L:t\mapsto \int_0^t \frac{z}{1-uz}\mathrm{d}u$ est de classe C¹ sur [0,1], et on a :

$$\forall t \in [0, 1], \quad L'(t) = \frac{z}{1 - tz}.$$

En tant que fraction rationnelle ne s'annulant par sur [0,1], l'application L' est donc de classe C^{∞} sur [0,1], et L l'est également. Une récurrence facile permet d'obtenir :

$$\forall n \in \mathbf{N} \setminus \{0\}, \ \forall t \in [0,1], \quad L^{(n)}(t) = \frac{(n-1)!z^n}{(1-tz)^n}.$$

7. Soit $t \in]0,1]$. D'après l'inégalité triangulaire renversée, on a :

$$||1| - |tz|| \leqslant |1 - tz|,$$

or $|1|-|tz|=1-t|z|\geqslant 0$ (en effet : $t|z|\leqslant t\leqslant 1$), donc l'inégalité ci-dessus devient : $1-t|z|\leqslant |1-tz|$. Or $t|z|\leqslant t$, donc $1-t\leqslant 1-t|z|$. On en déduit : $1-t\leqslant |1-tz|$.

Pour montrer qu'on a une inégalité stricte : 1-t < |1-tz|, nous allons supposer qu'il y a égalité, et en déduire une contradiction. Tout d'abord, si l'on a : 1-t=|1-tz|, alors on a aussi : 1-t=1-t|z|, puisque le raisonnement ci-dessus montre que 1-t|z| est compris entre 1-t et |1-tz|. Ceci implique : |z|=1. On peut donc écrire z sous forme exponentielle : $z=e^{i\theta}$. Alors :

$$|1 - tz|^2 = |1|^2 - 2\operatorname{Re}(tz) + |tz|^2 = 1 - 2\cos(\theta)t + t^2.$$

Par conséquent, après élévation au carré et réarrangement des termes, l'égalité 1-t=|1-tz| équivaut à :

$$2(\cos(\theta) - 1)t = 0,$$

ce qui n'est possible que si $\cos(\theta) = 1$, c'est-à-dire : $\theta \equiv 0 \mod 2\pi$. Mais dans ce cas on a $z = e^{i0} = 1$, or $z \neq 1$ par hypothèse de l'énoncé : nous avons une contradiction.

Par l'absurde, nous avons démontré:

$$\forall t \in]0,1], \quad 1-t < |1-tz|.$$

8. Nous allons utiliser le théorème de convergence dominée. Posons :

$$\forall n \in \mathbf{N}, \ \forall t \in]0,1], \quad f_n(t) = \left| \frac{1-t}{1-tz} \right|^n.$$

Il est clair que pour tout $n \in \mathbb{N}$, la fonction f_n est continue (par morceaux) sur]0,1] (nous avons déjà assuré que le dénominateur 1-tz ne s'annule pas sur]0,1]: voir la question 6), et la question précédente implique que : $\left|\frac{1-t}{1-tz}\right| < 1$, ce dont on déduit d'une part :

$$\forall t \in]0,1], \quad \lim_{n \to +\infty} f_n(t) = 0 \quad \text{(convergence simple de } (f_n)_{n \in \mathbb{N}} \text{ sur }]0,1])$$

en tant que suite géométrique dont la raison est de module strictement inférieure à 1, et d'autre part :

$$\forall n \in \mathbb{N}, \ \forall t \in]0,1], \quad |f_n(t)| \leq 1, \quad \text{(HYPOTHÈSE DE DOMINATION)}$$

où l'application $\varphi: t \mapsto 1$ est bien sûr continue par morceaux et intégrable sur]0,1] (en tant qu'application trivialement prolongeable par continuité sur le SEGMENT [0,1]).

Comme, de plus, la limite simple $t \mapsto 0$ de la suite $(f_n)_{n \in \mathbb{N}}$ est évidemment continue par morceaux, le théorème de convergence dominée s'applique, et on a :

$$\lim_{n \to +\infty} \int_0^1 \left| \frac{1-t}{1-tz} \right|^n dt = \int_0^1 0 = 0.$$

On montre de même : $\lim_{n\to+\infty} \int_0^1 \frac{z^{n+1}(1-t)^n}{(1-tz)^{n+1}} dt = 0$. Les seules différences sont :

- pour la convergence simple : on écrit que $\left|\frac{z^{n+1}(1-t)^n}{(1-tz)^{n+1}}\right| \leqslant \frac{|f_n(t)|}{|1-tz|} \underset{n \to +\infty}{\longrightarrow} 0$ et on utilise le théorème des gendarmes ;
- pour l'hypothèse de domination : une fonction de domination est dans ce cas $\varphi: t \mapsto \frac{1}{|1-tz|}$, continue par morceaux sur le segment [0,1], donc intégrable sur [0,1], et aussi sur [0,1].

Néanmoins, au vu du sujet, je pense que l'énoncé voulait nous faire utiliser la première intégrale pour en déduire la convergence de la seconde.

9. Soit $N \in \mathbb{N} \setminus \{0\}$. L'application L est de classe \mathbb{C}^N d'après la question 6. Par conséquent, la formule de Taylor avec reste intégral, à l'ordre N en 0, implique :

$$L(1) = \sum_{n=0}^{N} \frac{L^{(n)}(0)}{n!} (1-0)^n + \int_0^1 \frac{(1-t)^N}{N!} L^{(N+1)}(t) dt \stackrel{[q.6]}{=} \sum_{n=1}^{N} \frac{z^n}{n} + \int_0^1 (1-t)^N \frac{z^{N+1}}{(1-tz)^{N+1}} dt$$

(notons qu'on a L(0)=0). Or, d'après la question précédente, cette dernière intégrale converge vers 0, donc la suite $\left(\sum\limits_{n=1}^{N}\frac{z^n}{n}\right)_{N\geqslant 1}$ converge (c'est la différence d'une constante L(1) et d'une suite convergeant vers 0), et quand $N\to +\infty$ cette égalité donne :

$$L(1) = \sum_{n=1}^{+\infty} \frac{z^n}{n},$$

d'où le résultat.

Remarque. La lettre L évoque suggestivement le logarithme, dont nous reconnaissons le développement en série entière dans le membre de droite (lorsque z est une variable réelle dans [-1,1[, nous avons là $-\ln(1-z)$).

10. L'application $t \mapsto e^{it}$ est continue parce que ses parties réelle et imaginaire $t \mapsto \cos(t)$ et $t \mapsto \sin(t)$ le sont. Par composition avec l'application $(t, u) \mapsto t$, qui est continue car linéaire sur l'espace vectoriel réel \mathbf{R}^2 qui est de dimension finie, on en déduit que $(t, u) \mapsto e^{it}$ est continue sur \mathbf{R}^2 .

Comme $(t, u) \mapsto u$ est aussi continue par linéarité sur \mathbf{R}^2 , le produit $(t, u) \mapsto ue^{it}$ est continu sur \mathbf{R}^2 . Il est évident que $(t, u) \mapsto 1$ est continue sur \mathbf{R}^2 , donc $(t, u) \mapsto 1 + ue^{it}$ est continue sur \mathbf{R}^2 en tant que somme de fonctions continues, et elle est à valeurs dans \mathbf{C} .

Enfin, $|\cdot|$ est continue sur \mathbf{C} en tant que norme, donc par composition nous avons la continuité de γ sur \mathbf{R}^2 .

En particulier, si $a \in]0, \pi[$, alors par restriction γ est continue sur $[-a, a] \times [0, 1]$, qui est une partie fermée bornée de \mathbf{R}^2 (il est évident qu'elle est bornée, et pour l'aspect fermé on vérifie aisément la caractérisation séquentielle parce que les inégalités larges sont préservées par passage à la limite). D'après le théorème des bornes atteintes, γ atteint un minimum sur $[-a, a] \times [0, 1]$, c'est-à-dire : il existe $(t_0, u_0) \in [-a, a] \times [0, 1]$ tel que :

$$\gamma(t_0, u_0) = \min_{(t, u) \in [-a, a] \times [0, 1]} \gamma(t, u).$$

Si l'on pose $m_a = \gamma(t_0, u_0)$, on a donc bien l'existence de $m_a \in \mathbf{R}$ tel que :

$$\forall (t, u) \in [-a, a] \times [0, 1], \quad |1 + ue^{it}| = \gamma(t, u) \geqslant \gamma(t_0, u_0) = m_a.$$

Il reste à démontrer que $m_a>0$. Il est clair que $m_a\geqslant 0$ car un module est positif, et il faut donc seulement exclure le cas où m_a est nul. Pour cela, on note que si $m_a=0$, alors $\gamma(t_0,u_0)=0$. Par propriété de séparation du module, cela implique : $u_0e^{it_0}=-1$. De cette égalité il découle $u_0\neq 0$ et : $e^{it_0}=-\frac{1}{u_0}<0$. En prenant les arguments, on obtient : $t_0\equiv \pi \mod 2\pi$, mais c'est impossible car $t_0\in [-a,a]\subseteq]-\pi,\pi[$. On en déduit qu'on ne peut pas avoir $m_a=0$, et donc $m_a>0$: ce qu'il fallait démontrer.

11. Nous allons appliquer le théorème de dérivation des intégrales à paramètres. Posons :

$$\forall (t, u) \in]-\pi, \pi[\times[0, 1], \quad f(t, u) = \frac{e^{it}}{1 + ue^{it}}.$$

Alors f est de classe C^1 sur $]-\pi,\pi[\times[0,1]$ (on le justifie de façon analogue à la continuité de γ dans la question précédente), ce qui donne immédiatement la continuité par morceaux sur [0,1] par rapport à u, la classe C^1 sur $]\pi,\pi[$ par rapport à t et la continuité par morceaux sur [0,1] de $\frac{\partial f}{\partial t}$ par rapport à u. L'intégrabilité sur [0,1] de $u\mapsto f(t,u)$ pour tout $t\in]-\pi,\pi[$ ne pose pas de difficulté, puisqu'il s'agit d'une application continue sur un segment.

On vérifie l'hypothèse de domination localement : pour tout segment $[-a,a] \subseteq]-\pi,\pi[$, et tout $(t,u)\in [-a,a]\times [0,1]$, on a :

$$\left|\frac{\partial f}{\partial t}(t,u)\right| = \left|\frac{ie^{it}}{(1+e^{it}u)^2}\right| = \frac{1}{\gamma(t,u)^2} \stackrel{[q.10]}{\leqslant} \frac{1}{m_a^2}. \quad \text{(hypothèse de domination)}$$

(pour le calcul de $\frac{\partial f}{\partial t}(t,u)$, on se facilite la vie en écrivant $f(t,u) = \frac{1}{u} \frac{ue^{it}}{1+ue^{it}} = \frac{1}{u} \left(1 - \frac{1}{1+ue^{it}}\right)$). L'application $t \mapsto \frac{1}{m_a^2}$ est bien sûr continue par morceaux et intégrable sur le segment [0,1], donc l'hypothèse de domination est vérifiée.

On en déduit d'une part que pour tout $t \in]-\pi,\pi[$, l'application $u\mapsto \frac{\partial f}{\partial t}(t,u)$ est intégrable sur [0,1], et d'autre part que la fonction $F:t\mapsto \int_0^1 \frac{e^{it}}{1+ue^{it}}\mathrm{d}u$ est de classe \mathcal{C}^1 sur tout segment inclus dans $]-\pi,\pi[$, donc sur $]-\pi,\pi[$. On a de plus :

$$\forall t \in]-\pi, \pi[, \quad F'(t) = \int_0^1 \frac{\partial f}{\partial t}(t, u) du = \int_0^1 \frac{ie^{it}}{(1 + e^{it}u)^2} du.$$

12. Soit $t \in]-\pi,\pi[$. On remarque que l'intégrande est, à une constante près, de la forme $\frac{g'}{g^2}$ avec g la fonction $g:u\mapsto 1+ue^{it}$, et une primitive est donc $-\frac{1}{g}$ (attention au fait que les formulaires de primitives ne se transposent pas entièrement au cas des fonctions à valeurs complexes : une primitive de $\frac{g'}{g}$ n'est pas $\ln(|g|)$ en général, et c'est pourquoi le raisonnement ci-dessous ne pouvait pas être effectué directement avec F(t)). Donc :

$$F'(t) = i \left[-\frac{1}{1 + ue^{it}} \right]_0^1 = i \left(1 - \frac{1}{1 + e^{it}} \right) = \frac{ie^{it}}{1 + e^{it}}.$$

Or:

$$\frac{e^{it}}{1+e^{it}} = \frac{e^{it/2}}{e^{-it/2} + e^{it/2}} = \frac{e^{it/2}}{2\cos(t/2)} = \frac{\cos(t/2) + i\sin(t/2)}{2\cos(t/2)} = \frac{1}{2} + \frac{i}{2}\tan\left(\frac{t}{2}\right),$$

donc:

$$F'(t) = i\left(\frac{1}{2} + i\tan\left(\frac{t}{2}\right)\right) = -\frac{1}{2}\tan\left(\frac{t}{2}\right) + \frac{i}{2}.$$

Comme tan $=\frac{\sin}{\cos}=-\frac{\cos'}{\cos}$, on montre aisément qu'une primitive de $t\mapsto -\tan\left(\frac{t}{2}\right)$ est $t\mapsto 2\ln\left(\left|\cos\left(\frac{t}{2}\right)\right|\right)$. On en déduit l'existence d'une constante $c\in \mathbb{C}$ telle que :

$$\forall t \in]-\pi, \pi[, \quad F(t) = \ln\left(\cos\left(\frac{t}{2}\right)\right) + \frac{it}{2} + c.$$

Or le membre de droite est égal à c quand t=0, tandis que celui de gauche est égal à $F(0)=\int_0^1 \frac{\mathrm{d} u}{1+u} = \ln(2)$. Par conséquent : $c=\ln(2)$. Ainsi :

$$\forall t \in]-\pi, \pi[, \quad F(t) = \ln\left(2\cos\left(\frac{t}{2}\right)\right) + \frac{it}{2}.$$

13. Si $\theta \in]0, 2\pi[$, alors $\theta - \pi \in]-\pi, \pi[$, et on peut donc appliquer la question précédente pour obtenir la valeur de $F(\theta - \pi)$:

$$F(\theta - \pi) = \ln\left(2\cos\left(\frac{\theta - \pi}{2}\right)\right) + \frac{i(\theta - \pi)}{2} = \ln\left(2\sin\left(\frac{\theta}{2}\right)\right) + \frac{i(\theta - \pi)}{2}$$

Mais on a aussi, du fait que $e^{i(\theta-\pi)}=e^{-i\pi}e^{i\theta}=-e^{i\theta}$:

$$F(\theta - \pi) = \int_0^1 \frac{e^{i(\theta - \pi)}}{1 + ue^{i(\theta - \pi)}} du = -\int_0^1 \frac{e^{i\theta}}{1 - ue^{i\theta}} = -L(1),$$

où L a été définie en début de section (on prend $z=e^{i\theta}$, qui vérifie bien $|z|\leqslant 1$ et $z\neq 1$ car $\theta\not\equiv 0$ mod 2π). On en déduit :

$$L(1) = -\ln\left(2\sin\left(\frac{\theta}{2}\right)\right) + \frac{i(\pi - \theta)}{2}.$$

Or, d'après la question 9 :

$$L(1) = \sum_{n=1}^{+\infty} \frac{\left(e^{i\theta}\right)^n}{n} = \sum_{n=1}^{+\infty} \frac{e^{in\theta}}{n} = \sum_{n=1}^{+\infty} \frac{\cos(n\theta)}{n} + i \sum_{n=1}^{+\infty} \frac{\sin(n\theta)}{n}.$$

Par unicité de la partie réelle et de la partie imaginaire, on en déduit :

$$\sum_{n=1}^{+\infty} \frac{\cos(n\theta)}{n} = -\ln\left(2\sin\left(\frac{\theta}{2}\right)\right), \quad \sum_{n=1}^{+\infty} \frac{\sin(n\theta)}{n} = \frac{\pi - \theta}{2},$$

ce qu'il fallait démontrer.

Fonction caractéristique d'une variable aléatoire symétrique

14. Montrer que Φ_X est bien définie revient à justifier que pour tout $t \in \mathbf{R}$, la variable aléatoire $\cos(tX)$ admet une espérance; or le cosinus est borné par 1, donc d'après la question 2 on a le résultat voulu.

Soit $t \in \mathbf{R}$. Comme le cosinus est une fonction paire, on a : $\cos(tX) = \cos(-tX)$, donc les espérances de ces deux variables aléatoires sont les mêmes, et on a $\Phi_X(t) = \Phi_X(-t)$. Ceci prouve que Φ_X est une fonction paire.

Enfin, on a : $-1 \leqslant \cos(tX) \leqslant 1$, donc, par croissance de l'espérance : $\mathbf{E}(-1) \leqslant \mathbf{E}(\cos(tX)) \leqslant \mathbf{E}(1)$, c'est-à-dire : $-1 \leqslant \Phi_X(t) \leqslant 1$. D'où le résultat.

15. D'après le théorème du transfert, on a :

$$\forall t \in \mathbf{R}, \quad \Phi_X(t) = \sum_{n=0}^{+\infty} \cos(x_n t) \mathbf{P}(X = x_n).$$

Or, si l'on pose : $\forall n \in \mathbb{N}, \ \forall t \in \mathbb{R}, \ f_n(t) = \cos(x_n t) \mathbf{P}(X = x_n)$, alors on montre facilement : $\forall n \in \mathbb{N}, \|f_n\|_{\infty} \leqslant \mathbf{P}(X = x_n)$. La série $\sum_{n \geqslant 0} \mathbf{P}(X = x_n)$ converge par σ -additivité d'une probabilité, donc par comparaison des séries à termes positifs la série $\sum_{n \geqslant 0} \|f_n\|_{\infty}$ converge aussi. Ainsi la série de fonctions $\sum_{n \geqslant 0} f_n$ converge normalement, donc uniformément, sur \mathbf{R} , et f_n est continue sur \mathbf{R} pour tout $n \in \mathbb{N}$. En tant que limite uniforme d'une série de fonctions continues, la fonction Φ_X est continue sur \mathbf{R} .

16. On nous suggère de démontrer préalablement la convergence de la série $\sum_{n\geq 0} R_n \cos(nt)$. Pour cela, on note que d'après la propriété (\mathcal{D}_{α}) , on a pour tout n au voisinage de $+\infty$:

$$R_n \cos(nt) = \alpha \frac{\cos(nt)}{n} + O\left(\frac{\cos(nt)}{n^2}\right) = \alpha \frac{\cos(nt)}{n} + O\left(\frac{1}{n^2}\right).$$

Comme la série de Riemann $\sum_{n\geqslant 1}\frac{1}{n^2}$ est d'exposant 2>1, elle converge, et donc par comparaison le terme en $O\left(\frac{1}{n^2}\right)$ est le terme général d'une série absolument convergente, donc convergente. On en déduit que les séries $\sum_{n\geqslant 0}R_n\cos(nt)$ et $\sum_{n\geqslant 1}\alpha\frac{\cos(nt)}{n}$ sont de même nature. Or la convergence de cette dernière série a été démontrée dans la question 13, donc la série $\sum_{n\geqslant 0}R_n\cos(nt)$ converge également.

Passons à la démonstration des deux identités vérifiées par Φ_X . Il est supposé que X est à valeurs entières : $X(\Omega) \subseteq \mathbf{Z} = \{n \mid n \in \mathbf{N}\} \cup \{-n \mid n \in \mathbf{N}\}$. Donc, d'après le théorème du transfert de la symétrie de X, on a :

$$\Phi_X(t) = \cos(0 \cdot t)\mathbf{P}(X=0) + \sum_{n=1}^{+\infty} \cos(nt)\mathbf{P}(X=n) + \sum_{n=1}^{+\infty} \cos(-nt)\mathbf{P}(X=-n)$$
$$= \mathbf{P}(X=0) + 2\sum_{n=1}^{+\infty} \cos(nt)\mathbf{P}(X=n).$$

Or : $\forall n \in \mathbb{N} \setminus \{0\}$, $\mathbf{P}(|X| = n) = \mathbf{P}(X = n) + \mathbf{P}(X = -n) = 2\mathbf{P}(X = n)$, tandis que pour n = 0 on a clairement $\mathbf{P}(|X| = 0) = \mathbf{P}(X = 0)$. Donc l'égalité ci-dessus peut se réécrire :

$$\Phi_X(t) = \sum_{n=0}^{+\infty} \cos(nt) \mathbf{P}(|X| = n). \tag{*}$$

Ensuite, pour écrire le terme général en fonction de la suite $(R_n)_{n\in\mathbb{N}}$, on note qu'on a :

$$\forall n \in \mathbf{N}, \quad \mathbf{P}(|X| = n) = \mathbf{P}(|X| \ge n) - \mathbf{P}(|X| \ge n + 1) = R_n - R_{n+1},$$

donc:

$$\Phi_X(t) = \sum_{n=0}^{+\infty} (R_n - R_{n+1}) \cos(nt).$$

À présent, montrons la formule alternative demandée. Comme la série $\sum_{n\geqslant 0} R_n \cos(nt)$ converge, il en est de même de la série $\sum_{n\geqslant 0} R_{n+1} \cos(nt)$ (qui s'écrit comme différence de deux séries convergentes), et on peut donc scinder la somme ci-dessus en deux :

$$\Phi_X(t) = \sum_{n=0}^{+\infty} R_n \cos(nt) - \sum_{n=0}^{+\infty} R_{n+1} \cos(nt) = \sum_{n=0}^{+\infty} R_n \cos(nt) - \sum_{n=1}^{+\infty} R_n \cos((n-1)t)$$

suite au changement d'indice $n \mapsto n+1$ dans la deuxième somme. Par conséquent :

$$\Phi_X(t) = R_0 \cos(0) + \sum_{n=1}^{+\infty} R_n \left(\cos(nt) - \cos((n-1)t) \right).$$

On a clairement : $R_0 = \mathbf{P}(|X| \ge 0) = 1$, donc :

$$\Phi_X(t) = 1 + \sum_{n=1}^{+\infty} R_n \left(\cos(nt) - \cos((n-1)t) \right).$$

d'où le résultat.

Remarque. On nous demande implicitement d'effectuer une transformation d'Abel.

17. Implicitement, ce qu'on nous demande revient à démontrer que la somme $t \mapsto \sum_{n=1}^{+\infty} \left(R_n - \frac{\alpha}{n} \right) e^{int}$ est définie au voisinage de 0 (par valeurs supérieures) et continue en 0. Or, si l'on pose : $\forall n \in \mathbb{N} \setminus \{0\}$, $\forall t \in \mathbb{R}$, $f_n(t) = \left(R_n - \frac{\alpha}{n} \right) e^{int}$, alors f_n est continue sur \mathbb{R} pour tout entier $n \geq 1$, et on a : $\forall n \in \mathbb{N} \setminus \{0\}$, $\forall t \in \mathbb{R}$, $|f_n(t)| = \left| R_n - \frac{\alpha}{n} \right|$. On en déduit : $\forall n \in \mathbb{N} \setminus \{0\}$, $||f_n||_{\infty} = \left| R_n - \frac{\alpha}{n} \right|$. D'après la propriété de dispersion (\mathcal{D}_{α}) , on a donc : $||f_n||_{\infty} = \bigcup_{n \to +\infty} \left(\frac{1}{n^2} \right)$, or la série de Riemann $\sum_{n \geq 1} \frac{1}{n^2}$ est d'exposant 2 > 1, donc elle est convergente. Par comparaison de séries à termes positifs, la série $\sum_{n \geq 1} f_n$ converge normalement, donc converge uniformément sur \mathbb{R} . En particulier, en tant que

limite uniforme d'une série de fonctions continues, la somme $t \mapsto \sum_{n=1}^{+\infty} \left(R_n - \frac{\alpha}{n} \right) e^{int}$ est continue sur **R**. Si l'on pose C sa valeur en 0 (qui est bien un nombre réel, vu que que pour t = 0 la somme ne fait intervenir que des nombres réels), on a bien :

$$\sum_{n=1}^{+\infty} \left(R_n - \frac{\alpha}{n} \right) e^{int} \underset{t \to 0^+}{\longrightarrow} C.$$

Or, pour tout $t \in \mathbb{R}_+^*$ au voisinage de 0 (en particulier : entre 0 et 2π strictement) :

$$\sum_{n=1}^{+\infty} R_n e^{int} = \sum_{n=1}^{+\infty} \left(R_n - \frac{\alpha}{n} \right) e^{int} + \alpha \sum_{n=1}^{+\infty} \frac{e^{int}}{n}$$

$$\stackrel{[q.13]}{=} C + o(1) - \alpha \ln \left(2 \sin \left(\frac{t}{2} \right) \right) + i\alpha \frac{\pi - t}{2}.$$

En identifiant la partie réelle (notons que $C \in \mathbf{R}$) et la partie imaginaire, on a donc, pour t au voisinage de 0:

$$\sum_{n=1}^{+\infty} R_n \cos(nt) = C - \alpha \ln\left(2\sin\left(\frac{t}{2}\right)\right) + o(1), \quad \sum_{n=1}^{+\infty} R_n \sin(nt) = \alpha \frac{\pi - t}{2} + o(1).$$

Comme t = o(1) quand $t \to 0$, on peut écrire : $\alpha \frac{\pi - t}{2} = \frac{\alpha \pi}{2} + o(1)$. De plus :

$$\ln\left(2\sin\left(\frac{t}{2}\right)\right) = \ln\left(2\left(\frac{t}{2} + o(t)\right)\right) = \ln(t + o(t)) = \ln(t) + \ln(1 + o(1)) = \ln(t) + O(1).$$

Donc finalement, les deux égalités ci-dessus deviennent :

$$\sum_{n=1}^{+\infty} R_n \cos(nt) = -\alpha \ln(t) + C + O(1) = O(\ln(t)), \quad \sum_{n=1}^{+\infty} R_n \sin(nt) = \frac{\alpha \pi}{2} + o(1),$$

ce qu'il fallait démontrer.

18. Soit $t \in \mathbf{R}$. Rappelons qu'on a montré :

$$\Phi_X(t) = 1 + \sum_{n=1}^{+\infty} R_n \left(\cos(nt) - \cos((n-1)t) \right).$$

Or, pour tout entier $n \ge 1$, on a:

$$\cos(nt) - \cos((n-1)t) = -2\sin\left(\frac{t}{2}\right)\sin\left(\frac{(2n-1)t}{2}\right) = -2\sin\left(\frac{t}{2}\right)\sin\left(nt - \frac{t}{2}\right)$$
$$= -2\sin\left(\frac{t}{2}\right)\left[\sin\left(\frac{nt}{2}\right)\cos\left(\frac{t}{2}\right) - \sin\left(\frac{t}{2}\right)\cos\left(\frac{nt}{2}\right)\right]$$

donc:

$$\Phi_X(t) = 1 - 2\sin\left(\frac{t}{2}\right) \left[\cos\left(\frac{t}{2}\right) \sum_{n=1}^{+\infty} R_n \sin\left(\frac{nt}{2}\right) - \sin\left(\frac{t}{2}\right) \sum_{n=1}^{+\infty} R_n \cos\left(\frac{nt}{2}\right)\right]$$
$$= 1 - \sin(t) \sum_{n=1}^{+\infty} R_n \sin\left(\frac{nt}{2}\right) + 2\left(\sin\left(\frac{t}{2}\right)\right)^2 \sum_{n=1}^{+\infty} R_n \cos\left(\frac{nt}{2}\right).$$

Grâce à la question précédente, on sait qu'on a au voisinage de 0 :

$$\left(\sin\left(\frac{t}{2}\right)\right)^2 \sum_{n=1}^{+\infty} R_n \cos\left(\frac{nt}{2}\right) = O\left(\left(\sin\left(\frac{t}{2}\right)\right)^2 \ln(t)\right) = O\left(t^2 \ln(t)\right) = o(t),$$

car $t \ln(t) \xrightarrow{t \to 0+} 0$, tandis qu'on a :

$$\sin(t)\sum_{n=1}^{+\infty} R_n \sin\left(\frac{nt}{2}\right) = (t+o(t))\left(\frac{\pi\alpha}{2} + o(1)\right) = \frac{\alpha\pi t}{2} + o(t),$$

donc finalement, quand $t \to 0^+$:

$$\Phi_X(t) = 1 - \frac{\pi \alpha t}{2} + o(t),$$

ce qu'il fallait démontrer. Ce calcul montre en outre :

$$\lim_{t \to 0^+} \frac{\Phi_X(t) - \Phi_X(0)}{t} = -\frac{\pi \alpha}{2}.$$

La fonction Φ_X étant paire, on en déduit :

$$\lim_{t \to 0^{-}} \frac{\Phi_X(t) - \Phi_X(0)}{t} \stackrel{[u = -t]}{=} \lim_{u \to 0^{+}} - \frac{\Phi_X(u) - \Phi_X(0)}{u} = \frac{\pi \alpha}{2}.$$

Comme $\alpha \neq 0$, on en déduit : $\lim_{t\to 0^+} \frac{\Phi_X(t) - \Phi_X(0)}{t} \neq \lim_{t\to 0^-} \frac{\Phi_X(t) - \Phi_X(0)}{t}$, donc la fonction Φ_X n'est pas dérivable en 0.

Convergence simple de la suite des fonctions caractéristiques des variables M_n

19. Soit $t \in \mathbf{R}$. Comme X et Y sont symétriques et indépendantes, leur somme X + Y est symétrique d'après la question 5. Dans ce cas, on a d'après la question 4 :

$$\mathbf{E}\left(\sin\left(t(X+Y)\right)\right) = 0.$$

On en déduit, par linéarité de l'espérance :

$$\mathbf{E}\left(e^{it(X+Y)}\right) = \underbrace{\mathbf{E}\left(\cos\left(t(X+Y)\right)\right)}_{=\Phi_{X+Y}(t)} + i\underbrace{\mathbf{E}\left(\sin\left(t(X+Y)\right)\right)}_{=0} = \Phi_{X+Y}(t).$$

Exprimer la fonction caractéristique à l'aide de l'exponentielle nous permet de tirer profit de sa propriété de morphisme (c'est-à-dire du fait qu'il transforme sommes en produits). On a en effet :

$$\Phi_{X+Y}(t) = \mathbf{E}\left(e^{it(X+Y)}\right) = \mathbf{E}\left(e^{itX}e^{itY}\right),$$

et comme X et Y sont indépendantes, c'est aussi le cas de e^{itX} et e^{itY} , et par propriété de l'espérance :

$$\mathbf{E}\left(e^{itX}e^{itY}\right) = \mathbf{E}\left(e^{itX}\right)\mathbf{E}\left(e^{itY}\right).$$

On montre comme ci-dessus que $\mathbf{E}\left(e^{itX}\right) = \Phi_X(t)$ et $\mathbf{E}\left(e^{itY}\right) = \Phi_Y(t)$. On a donc montré :

$$\Phi_{X+Y}(t) = \Phi_X(t)\Phi_Y(t),$$

d'où le résultat voulu.

20. On admet, dans le préambule du sujet, que X_{n+1} est indépendante de $\sum_{k=1}^{n} X_k = nM_n$ pour tout entier $n \ge 1$. Cela nous permet d'une part de démontrer par récurrence que nM_n est symétrique pour tout entier $n \ge 1$ (utiliser la question 5), et donc M_n aussi, et d'autre part d'appliquer la question précédente avec $X = X_{n+1}$ et $Y = \sum_{k=1}^{n} X_k$. Comme $X_{n+1} + \sum_{k=1}^{n} X_k = \sum_{k=1}^{n+1} X_k$, on en déduit :

$$\forall n \in \mathbf{N} \setminus \{0\}, \ \forall t \in \mathbf{R}, \quad \Phi_{n+1} \underset{k=1}{\overset{n}{\sum}} X_k(t) = \Phi_{X_{n+1}}(t) \Phi_{\sum_{k=1}^n X_k}(t).$$

De cela on tire, par une récurrence facile :

$$\forall n \in \mathbf{N} \setminus \{0\}, \ \forall t \in \mathbf{R}, \quad \Phi_{\sum\limits_{k=1}^{n} X_k}(t) = \prod\limits_{k=1}^{n} \Phi_{X_k}(t).$$

Comme les X_k ont toutes la même loi que X_1 , tous les $\cos(tX_k)$ ont même loi que $\cos(tX_1)$ d'après le théorème 1 du préambule, et comme l'espérance d'une variable aléatoire dépend uniquement de sa loi, on en déduit que les fonctions caractéristiques des X_k sont toutes égales à la fonction caractéristique de X_1 . Donc :

$$\forall n \in \mathbf{N} \setminus \{0\}, \ \forall t \in \mathbf{R}, \quad \Phi_{\sum\limits_{k=1}^{n} X_k}(t) = (\Phi_{X_1}(t))^n.$$

Or:
$$\sum_{k=1}^{n} X_k = nM_n$$
, et:

$$\forall n \in \mathbf{N} \setminus \{0\}, \ \forall t \in \mathbf{R}, \quad \Phi_{nM_n}(t) = \mathbf{E}\left(\cos(t(nM_n))\right) = \mathbf{E}\left(\cos((tn)M_n)\right) = \Phi_{M_n}(nt).$$

Par conséquent, l'égalité ci-dessus équivaut à : $\forall n \in \mathbf{N} \setminus \{0\}, \ \forall t \in \mathbf{R}, \ \Phi_{M_n}(nt) = (\Phi_{X_1}(t))^n$. Il reste à remplacer t par $\frac{t}{n}$ pour en déduire le résultat voulu :

$$\forall t \in \mathbf{R}, \quad \Phi_{M_n}(t) = (\Phi_{X_1}(t/n))^n.$$

21. Comme les fonctions Φ_{M_n} et $t \mapsto \exp\left(-\frac{\pi\alpha|t|}{2}\right)$ sont paires, il suffit de démontrer le résultat voulu pour t positif. Soit $t \in \mathbf{R}_+$. Quand $n \to +\infty$, on a $\frac{t}{n} \to 0$. Donc, d'après la question 18 (qu'on peut appliquer vu que par hypothèse, X_1 est symétrique et vérifie la condition (\mathcal{D}_{α})):

$$\left(\Phi_{X_1}(t/n)\right)^n = \left(1 - \frac{\pi \alpha t}{2n} + \underset{n \to +\infty}{o} \left(\frac{1}{n}\right)\right)^n = e^{n \ln\left(1 - \frac{\pi \alpha t}{2n} + \underset{n \to +\infty}{o}\left(\frac{1}{n}\right)\right)}$$

(notons qu'on a bien $1-\frac{\pi\alpha t}{2n}+o\atop n\to +\infty}\left(\frac{1}{n}\right)>0$ pour n suffisamment grand, ce qui autorise la forme logarithmique). Or : $n\ln\left(1-\frac{\pi\alpha t}{2n}+o\atop n\to +\infty}\left(\frac{1}{n}\right)\right)\underset{n\to +\infty}{\sim}n\times\left(-\frac{\pi\alpha t}{2n}\right)\underset{n\to +\infty}{\longrightarrow}-\frac{\pi\alpha t}{2}$. Par continuité de l'exponentielle, on en déduit :

$$\Phi_{M_n}(t) \underset{n \to +\infty}{\longrightarrow} \exp\left(-\frac{\pi \alpha t}{2}\right) = \exp\left(-\frac{\pi \alpha |t|}{2}\right),$$

d'où le résultat si $t \ge 0$, et aussi pour t < 0 par parité.

22. Posons : $\forall t \in \mathbf{R}, g(t) = \exp\left(-\frac{\pi\alpha|t|}{2}\right)$. Si la convergence de la question précédente est uniforme sur \mathbf{R} , alors on a aussi :

$$\forall n \in \mathbf{N}, \quad 0 \leqslant |\Phi_{M_n}(2\pi n)| \leqslant |\Phi_{M_n}(2\pi n) - g(2\pi n)| + |g(2\pi n)| \leqslant \|\Phi_{M_n} - g\|_{\infty} + \exp\left(-\pi^2 \alpha n\right) \underset{n \to +\infty}{\longrightarrow} 0,$$

donc d'après le théorème des gendarmes : $\lim_{n\to+\infty} \Phi_{M_n}(2\pi n) = 0$. Or, d'après la question 20 : $\forall n \in \mathbb{N} \setminus \{0\}, \Phi_{M_n}(2\pi n) = (\Phi_{X_1}(2\pi))^n$. Le fait que cette suite géométrique converge vers 0 signifie qu'on a nécessairement : $|\Phi_{X_1}(2\pi)| < 1$. Or, d'après l'identité (*) démontrée à la question 16 :

$$\Phi_{X_1}(2\pi) = \sum_{n=0}^{+\infty} \cos(2\pi n) \mathbf{P}(|X_1| = n) = \sum_{n=0}^{+\infty} \mathbf{P}(|X_1| = n) = \mathbf{P}(|X_1| \ge 0) = 1,$$

ce qui contredit le fait que $|\Phi_{X_1}(2\pi)| < 1$.

Par l'absurde, on a montré que la convergence de la question précédente n'est pas uniforme sur R.