

La

Devoir de méthode

Champs électrostatiques

☑ **Étape 1 :** Choisir un système de coordonnées adapté pour exprimer le champ électrique.

☑ Étape 2 : Étudier les symétries de la distribution de charge et simplifier l'expression du champ.

☑ Étape 3 : Étudier les invariances de la distribution de charge et simplifier l'expression du champ.

☑ Étape 4 : Définir une surface de Gauss adaptée à la situation.

 $\ensuremath{\,\boxtimes\,}$ Étape 5 : Calculer le flux électrostatique à travers la surface de Gauss.

☑ Étape 6 : Appliquer le théorème de Gauss en distinguant les éventuels cas possibles.

☑ Étape 7 : Déterminer d'autres grandeurs électrostatiques (potentiel, capacité) à partir du champ.

On souhaite étudier la structure du champ électrique généré par des systèmes à haut degré de symétrie. Cela permet de modéliser de manière très simple des situations réelles plus complexes, comme l'expérience photographiée ci-contre dans laquelle un ballon de baudruche portant une densité surfacique de charge σ = est capable d'attirer des morceaux de papier posés sur une table.

On décide de modéliser le ballon par une sphère de rayon R et de considérer que l'air à l'intérieur comme à l'extérieur du ballon est totalement vide de charge. On note O le centre du ballon et on munit l'espace d'un repère $(\overrightarrow{e_i}, \overrightarrow{e_j}, \overrightarrow{e_k})$ et on notera respectivement E_i , E_j et E_k les composantes du champ électrique dans cette base.

ን Étape 1 - Dor	ner la forme générale o	lu champ électric	que généré par le	ballon dans le mo	odèle proposé.
Étape 2.a - D	onner les plans de syme	étrie de la distribi	ution de charge.		
Étape 2.b - D	éduire une expression s	simplifiée du chai	mp électrique.		
	_				
Étape 3.a - Pi	éciser les invariances d	de la distribution (de charge.		

Étape 3.b - Déduire une expression simplifiée du champ électrique.
🖒 Étape 4 - Définir la surface de Gauss à considérer dans ce cas.
$m{\mathcal{C}}$ Étape 5 - Calculer le flux électrostatique Φ_E du champ à travers la surface de Gauss choisie.
Étape 6.a - Énoncer le théorème de Gauss.
\cite{C} Étape 6.b - Appliquer le théorème de Gauss dans le cas $r < R$.
$\ \hat{\mathbf{C}}$ Étape 6.c - Appliquer le théorème de Gauss dans le cas $r > R$.
Etape 6.6 Appriques le trices eme de dades dans le 665 l' > 1.

			n tout point	111 40 10	<i>эрасе.</i>					
Étape 6.e - Rep	orésenter graphiq	juement $ \overrightarrow{E}($	r) .							
										-
4 . – 5	nner la relation er			\rightarrow $\langle 1.5 \rangle$				()		
Étano 7 h Ido	ntifier l'expression	n du gradient	t en coordo	nnée sph	érique.					
Elape 7.b - laei					0.6					
	0.0	0			2) F					0.6
	$rac{\partial f}{\partial heta} \overrightarrow{u_ heta} + rac{\partial f}{\partial z} \overrightarrow{u_z}$	$\overrightarrow{\operatorname{grad}} f = \frac{\partial}{\partial t}$	$\frac{f}{r}\overrightarrow{u_r} + \frac{1}{r}\frac{\partial f}{\partial \theta}\overrightarrow{u}$	$\overrightarrow{l_{\theta}} + \frac{1}{r\sin\theta}$	$\frac{\partial f}{\partial \varphi} \overrightarrow{u_{\varphi}}$	g	$\overrightarrow{\operatorname{rad}}f =$	$\frac{\partial f}{\partial x}\overrightarrow{u_x} +$	$\frac{\partial f}{\partial y}\overrightarrow{u_y} +$	$-\frac{\partial f}{\partial z}$
$\overrightarrow{\operatorname{rad}} f = \frac{\partial f}{\partial r} \overrightarrow{u_r} + \frac{1}{r} \overrightarrow{f}$							$\overrightarrow{\operatorname{rad}}f =$	$\frac{\partial f}{\partial x}\overrightarrow{u_x} +$	$\frac{\partial f}{\partial y}\overrightarrow{u_y} +$	$-\frac{\partial f}{\partial z}i$
$\overrightarrow{\operatorname{rad}} f = \frac{\partial f}{\partial r} \overrightarrow{u_r} + \frac{1}{r} \overrightarrow{f}$							$\overrightarrow{\operatorname{rad}}f =$	$\frac{\partial f}{\partial x}\overrightarrow{u_x} +$	$\frac{\partial f}{\partial y}\overrightarrow{u_y} +$	$-\frac{\partial f}{\partial z}i$
$\overrightarrow{\operatorname{grad}} f = \frac{\partial f}{\partial r} \overrightarrow{u_r} + \frac{1}{r} \overrightarrow{f}$							$\overrightarrow{\operatorname{rad}}f =$	$\frac{\partial f}{\partial x}\overrightarrow{u_x} +$	$\frac{\partial f}{\partial y}\overrightarrow{u_y} +$	$-rac{\partial f}{\partial z}$
$\overrightarrow{\operatorname{grad}} f = \frac{\partial f}{\partial r} \overrightarrow{u_r} + \frac{1}{r} \overrightarrow{f}$							$\overrightarrow{\operatorname{rad}}f =$	$\frac{\partial f}{\partial x}\overrightarrow{u_x} +$	$\frac{\partial f}{\partial y}\overrightarrow{u_y} +$	$-rac{\partial f}{\partial z}$
$\overrightarrow{\operatorname{grad}} f = \frac{\partial f}{\partial r} \overrightarrow{u_r} + \frac{1}{r} \overrightarrow{f}$							$\overrightarrow{\operatorname{rad}}f =$	$\frac{\partial f}{\partial x}\overrightarrow{u_x} +$	$\frac{\partial f}{\partial y}\overrightarrow{u_y} +$	$-rac{\partial f}{\partial z}$
$\overrightarrow{\operatorname{grad}}f = rac{\partial f}{\partial r}\overrightarrow{u_r} + rac{1}{r}$ e Étape 7.c - Déc							$\overrightarrow{\operatorname{rad}}f =$	$\frac{\partial f}{\partial x}\overrightarrow{u_x} +$	$\frac{\partial f}{\partial y}\overrightarrow{u_y} +$	$-\frac{\partial f}{\partial z}i$
$\overrightarrow{\operatorname{grad}} f = \frac{\partial f}{\partial r} \overrightarrow{u_r} + \frac{1}{r} \overrightarrow{f}$							$\overrightarrow{\operatorname{rad}}f =$	$\frac{\partial f}{\partial x}\overrightarrow{u_x} +$	$\frac{\partial f}{\partial y}\overrightarrow{u_y} +$	$-\frac{\partial f}{\partial z}$
$\overrightarrow{\operatorname{grad}} f = \frac{\partial f}{\partial r} \overrightarrow{u_r} + \frac{1}{r} \overrightarrow{f}$							$\overrightarrow{\operatorname{rad}}f =$	$\frac{\partial f}{\partial x}\overrightarrow{u_x} +$	$\frac{\partial f}{\partial y}\overrightarrow{u_y} +$	$-\frac{\partial f}{\partial z}$
$\overrightarrow{\operatorname{rad}} f = \frac{\partial f}{\partial r} \overrightarrow{u_r} + \frac{1}{r} \cdot \overrightarrow{g}$							$\overrightarrow{\operatorname{rad}}f =$	$\frac{\partial f}{\partial x}\overrightarrow{u_x} +$	$\frac{\partial f}{\partial y}\overrightarrow{u_y} +$	$-rac{\partial f}{\partial z}$