TP ELEC 2 : Filtre passe-bande du 2nd ordre – Diagramme de Bode

Objectifs:

- Etudier l'effet d'un filtre passe-bande sur un signal électrique ; étudier l'influence du facteur de qualité sur le filtrage.
- Tracer un diagramme de Bode, et l'exploiter pour déterminer expérimentalement les caractéristiques d'un filtre.
- Revoir les principales notions associées aux incertitudes de type B, utiliser un Zscore pour vérifier la cohérence d'un résultat.

1) Etude théorique du montage

On souhaite réaliser un montage RLC série permettant de visualiser simultanément à l'oscilloscope la tension $u_e(t)$ délivrée par le générateur et la tension $u_s(t)$ aux bornes de la résistance R.

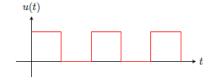
On prendra $C=10~\mathrm{nF}$ et $L=44~\mathrm{mH}$ qui **conserveront des valeurs constantes** dans toute la suite du TP ; la résistance interne de la bobine est d'environ $R_L=8~\Omega$. La résistance R sera prise variable.

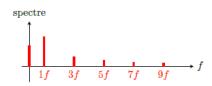
- **Q1)** Proposer un schéma du montage électrique à réaliser, en faisant figurer les branchements de l'oscilloscope.
- Q2) Prévoir par une étude qualitative la nature du filtre ainsi réalisé
- **Q3)** Etablir l'expression de la fonction de transfert de ce filtre, en exprimant les grandeurs caractéristiques du filtre H_0 , ω_0 et Q en fonction de R,L,C et R_L . Rappeler leur lien avec la largeur de la bande passante du filtre.
- **Q4)** Calculer la valeurs de la fréquence f_r de résonance de ce filtre, puis déterminer les valeurs de R permettant d'obtenir un filtre de facteur de qualité Q=10 et Q=0,1.

2) Effet d'un filtre non sélectif sur des signaux

 ${\cal F}$ Réaliser le montage étudié tel que ${\cal Q}=0$,1 et l'alimenter par une tension d'entrée $u_e(t)$ sinusoïdale.

On réalise toujours d'abord le circuit seul, et ensuite seulement, on branche l'oscilloscope (et les divers appareils de mesure) en faisant attention aux masses.


- Faire varier la fréquence de la tension d'entrée et vérifier expérimentalement la nature du filtre réalisé.
- Déterminer expérimentalement la fréquence de résonance. Comparer la valeur obtenue à la valeur théorique en calculant le Z-score associé. Vous pourrez utiliser le programme python qui se trouve ici.


Action du filtre non sélectif sur un signal créneau

Le développement de Fourier d'un signal créneau de fréquence f et d'amplitude $E=1\ V$ s'écrit :

$$u(t) = \langle u \rangle + \frac{4E}{\pi} \left(sin(\omega t) + \frac{1}{3} sin(3\omega t) + \frac{1}{5} sin(5\omega t) + \cdots \right)$$

Il ne contient que des harmoniques impaires, dont l'amplitude est inversement proportionnelle à n.

Générer une tension créneau et observer le signal de sortie pour les fréquences suivantes :

1

$$f_S = 0.01 f_r$$
, $f_S = f_r$, $f_S = 11 f_r$.

Q5) Interpréter l'allure des signaux de sortie.

Action du filtre non sélectif sur un signal triangulaire

Le développement de Fourier d'un signal triangulaire de fréquence f et d'amplitude E s'écrit :

$$u(t) = \langle u \rangle + \frac{8E}{\pi^2} \left(\cos(\omega t) + \frac{1}{9} \cos(3\omega t) + \frac{1}{25} \cos(5\omega t) + \cdots \right)$$

Il ne contient que des harmoniques paires, dont l'amplitude est inversement proportionnelle à n^2 .

Idem : générer une tension triangulaire et observer le signal de sortie pour les fréquences suivantes :

$$f_S = 0.01 f_r$$
, $f_S = f_r$, $f_S = 11 f_r$.

Q6) Interpréter l'allure des signaux de sortie.

3) Effet d'un filtre sélectif sur des signaux

- Modifier la valeur de la résistance afin d'avoir $\,Q=10.\,$ Alimenter le filtre par une **tension créneau**; diminuer sa fréquence depuis la fréquence $\,f_r\,$ de résonance du filtre.
- Q7) Interpréter l'allure des signaux de sortie.

4) Tracé du diagramme de Bode en gain

- ${\cal F}$ Tracer le diagramme de Bode en gain du filtre pour ${\it Q}=10$ (voir fiche méthode):
 - Sur du papier semi-log
 - A l'aide d'un programme python (par exemple <u>celui-ci</u> sur cahier de prépa).
- **Q8)** Déterminer en exploitant le diagramme de Bode la fréquence de résonance, el gain maximal ainsi que le facteur de qualité du filtre, en évaluant les incertitudes associées.
- Si vous avez le temps, vous pouvez essayer de modéliser le diagramme expérimental par un diagramme théorique, par exemple en adaptant le programme proposé ci-dessus.

2

Matériel utilisé par paillasse (10 paillasses)

- GBF + Oscillo
- 2 multimètres
- Résistance *R* variable
- Capacité C = 10 nF
- Bobine (L = 44mH)
- Boites de résistances et capacités variables
- 1 PC
- Papier semi-log