D.M N°8 Janvier 2026

MPI 25-26

DM. DE PHYSIQUE N°8 - MPI

A rendre pour le Lundi 12 Janvier

L'usage de la calculatrice et de tout dispositif électronique est interdit

PROBLEME N°1 : ETUDE DU MOUVEMENT D’UN SATELLITE (CCINP MP)

Données

charge élémentaire : e = 1,6 - 10719 C;

masse de I'électron : m, = 9,1 - 10~ kg;

intensité de la pesanteur a la surface de la Terre : ¢ = 9,8 m - s 2;

permittivité diélectrique du vide : g =8,9-10"12F - m™!;
célérité des ondes électromagnétiques dans le vide : ¢ = 3,0- 10°m -s~ L.

Les systémes d'observation des océans par
satellite ont été imaginés et développés au
début des années 70. Depuis, plus d'une quin-
zaine de satellites d'observation embarquant
des altimétres radars ont été lancés dans le
but d'observer le comportement des océans
(figure 2).

Issues d’une coopération du CNES et de la
NASA, la série des satellites Topex-Poséidon,
initiée en 1992, puis celle des satellites Jason,
ont permis de mesurer I'élévation moyenne
des mers avec précision : (3,6 +0,1) mm/an
durant ces trente derniéres années.

On se propose dans cette partie d'étudier le mouvement d’un tel satellite, en orbite autour du centre O
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Figure 2 - Satellites altimétriques lancés
depuis 1992. Vue d’artiste. Crédit : CNES

de la Terre, modélisée par un corps de répartition de masse a symétrie sphérique, de rayon Rt etde

masse M.

1.1 - Force centrale conservative

On commence par étudier le mouvement d’'un mobile quelconque, de masse m et assimilé a un point
matériel M, dans le référentiel géocentrique (R7) considéré comme galiléen. Le mobile n’est soumis

gu'a la seule action de la Terre.

Q1. Rappeler la définition du référentiel géocentrique et celle d'un référentiel galiléen.

Q2. Aprés avoir justifié la direction du champ de gravitation terrestre ?(M) et les invariances de
sa horme, établir 'expression de celui-ci en un point M extérieur a la Terre en fonction de la

constante de gravitation universelle G, de la masse My, de la distance r = OM et du vecteur

unitaire @ = E)—M)/r. En déduire 'expression Fg de la force de gravitation exercée par la Terre

sur le mobile de masse m.

Q3. Montrer que le moment cinétique ZS du mobile par rapport au point O est une constante du
mouvement. En déduire que la trajectoire du mobile est plane.
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Dans la suite, on associera au référentiel
(Rr) le repére orthonormé (O, e, e, , ;) de
fagon a ce que le moment cinétique £, soit
aligné avec e.. On posera Lo — Loel eton
se placera en coordonnées polaires (r,6),
de centre O, pour décrire le mouvement du

mobile (figure 3).

Q4. Montrer que la force gravitationnelle
s’'exercant sur le mobile dérive d’une
énergie potentielle &,. Etablir 'expres-
sion de celle-ci en la prenant, par conven-
tion, nulle a l'infini.

Figure 3 - Description du mouvement du mobile
dans le systéme de coordonnées polaires

Q5. Montrer que I'énergie mécanique &, est une constante du mouvement et qu’elle peut se mettre
sous la forme :

1
Em = §m7'"2 + Epefi(T) (1)

ol &, () est un terme, appelé énergie potentielle effective, que I'on exprimera en fonction de
G, m, M, Ly etde r.

Q6. Expliquer pourquoi I'énergie mécanique du mobile est nécessairement supérieure ou égale a
son énergie potentielle effective.

Q7. Représenter graphiquement, pour une valeur donnée de Lo, I'énergie potentielle effective &, o
du mobile en fonction de r. Faire apparaitre sur le graphique I'’énergie mécanique d’une trajectoire
associée & un état lié. On rappelle que, pour une force centrale en 1/72, la trajectoire d’un état
lié est elliptique.

Q8. Pour un mouvement elliptique quelconque, indiquer a quelles positions particuliéres I'énergie
meécanique est égale a I'énergie potentielle effective. Caractériser le mouvement du mobile dans
le cas ou I'énergie mécanique est égale au minimum de 'énergie potentielle effective.

Q9. Exprimer I'énergie mécanique &, 5 du satellite situé sur l'orbite altimétrique de reférence, en
fonction de G, M, m et de R.

Q10. Etablir la troisiéme loi de Kepler dans le cas particulier d’'une orbite circulaire, en utilisant les
paramétres liés a l'orbite altimétrique.

On admettra que la troisiéme loi de Kepler est valable plus généralement pour un mouvement el-
liptigue. Son expression peut se déduire de I'équation obtenue pour le mouvement circulaire, en
remplacant le rayon R de 'orbite circulaire par le demi-grand axe a de la trajectoire elliptique.

.2 - Jason-2 : un exemple pour la fin de vie des satellites

En fin de vie, pour que ne soit pas laissé un objet non contrdlé sur 'orbite altimétrique de référence,
le satellite Jason-2 a été dirigé vers une orbite dite « cimetiére », d’altitude Iégérement moins haute
que celle de l'orbite altimétrique de référence, avant d’étre définitivement abandonné. On se propose
dans cette sous-partie d'étudier le cas d'une manceuvre de ce type dans le cas trés simplifié, illustré
figure 4, d'un transfert entre deux orbites circulaires coplanaires sous la seule action de I'attraction
terrestre. L'orbite de transfert, appelée orbite de Hohmann, correspond a une ellipse dont I'un des
foyers est le centre O de la Terre, dont I'apogée A est situé sur l'orbite altimétrique de référence
(rayon R) et dont le périgée P est sur l'orbite cimetiére (rayon R,).

Pour modifier 'orbite du satellite, il faut 'accélérer ou le freiner en commandant le fonctionnement et
la direction de ses moteurs. On considérera que la poussée générée par ceux-ci s'exerce pendant
une durée tellement courte que les changements d’orbites se font instantanément.
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Figure 4 - Tracé des différentes orbites du satellite

Q11. En utilisant I'equation (1), montrer que I'énergie mecanique &, i du satellite sur 'orbite de trans-

fert peut se mettre sous la forme :
GMrm

R R.

Q12. Exprimer la variation d’énergie mécanique A&, = &, — Eman NECEsSSAire pour passer de
I'orbite initiale a I'orbite de transfert. Commenter le signe de AE,,.

gm,tr =

Q13. En justifiant la réponse, indiquer s'il faut accélérer ou freiner le satellite pour le transférer en P
de l'orbite de transfert a I'orbite cimetiére.

PROBLEME N°2 : LES LOIS DE KEPLER ET L’UNITE ASTRONOMIQUE (CCMP MP)

Pour toutes les applications numériques, on se contentera de deux chiffres significatifs. Les
notations des constantes fondamentales utiles, des données numériques et des rappels de syntaze
Python sont regroupés en fin d’énoncé. On pourra noter i, 4, i, la base cartésienne associée
au repére (Oxyz) et r, Uy la base locale associée aux coordonnées polaires 7,60 du point M
situé dans le plan (Ozy), cf. figure 1.
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FIGURE 1 — Base locale associée aux coordonnées polaires

: . : . df -
On posera j2 = —1. On notera par un point les dérivées temporelles, [ = - Les vecteurs @

sont surmontés d’une fléche, sauf les vecteurs unitaires notés 1.
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Ce probléme est consacré aux lois de KEPLER (1609 et 1618) et & une mesure historique de
I'unité astronomique par CASSINI (1672). On notera que ces travaux sont toux deux nettement
antérieurs a la publication de la loi de la gravitation universelle par NEWTON (1687).

On s’intéressera en particulier auz orbites de la Terre et de Mars, la planéte la plus proche de la
Terre avec une trajectoire extérieure. Le plan de sa trajectoire est presque confondu (G moins de
2° prés) avec le plan de Uécliptique (la trajectoire terrestre). Ces deur trajectoires sont proches
de cercles autour du Soleil.

I.LA° Mouvements d’une planéte sous ’action d’un astre attracteur

On étudie ici, relativement & un référentiel galiléen (R;), le mouvement d’un astre & assimilé
a un point P de masse mp sous I'action du seul champ de gravitation exercé par un autre astre
attracteur &/ de masse ma et de centre fixe A. On notera ¥ = AP, r = ||F]| et 7= ri,.

J — 1. Quelle condition (inégalité forte) permet de considérer A comme fixe ?

Quelle est 'expression de la force gravitationnelle F' exercée par &/ sur &2 si les deux
astres sont assimilés a des points ?

d — 2. Que devient 'expression de F' si & reste ponctuel tandis que 'astre o, de rayon R4 < 7,
posséde une répartition de masse a symétrie sphérique ? On justifiera sa réponse.

1 — 3. Cette expression reste-t-elle encore applicable si & et & sont tous deux & symétrie sphé-
rique ? On pourra, dans tout ce qui suit, considérer o et &7 comme des points matériels

AetP.

(J — 4. Montrer que le mouvement de P est plan; on notera (Azy) le plan de ce mouvement.
Définir la constante C' issue de la loi des aires pour ce mouvement et relier cette constante
aux coordonnées polaires (r,#) du mouvement de P dans (Azy).

On note 4 la vitesse de P et ., ity les vecteurs de la base polaire associée au mouvement de P.
Ty g
v est fonction du temps et donc aussi de 'angle polaire 6.

—

d
0 — 5. Exprimer d—; et en déduire que 7(f) = C

p un paramétre du mouvement qu’on exprimera en fonction de C, m4 et de la constante
universelle de gravitation G.

?1,9+€

oll € est une constante d’intégration et

Montrer que le vecteur € est sans dimension et situé dans le plan (Azy) du mouvement.
Sans perte de généralité, on peut supposer que € = e, avec e = ||€]| = 0.
1 — 6. Exprimer 7 et rf en fonction de C, p, e et 6.

En déduire r en fonction de p, e et # et montrer que e < 1 pour un mouvement borné.

Quelle est, dans ce cas et sans démonstration, la nature de la trajectoire 7 On admettra
que le mouvement est périodique de période T'.

I.B Période du mouvement
1 — 7. En utilisant par exemple la question précédente, montrer que T = ng/ 2 /A/Gm4 on la
2w
dd
constante Z s’obtient par le calcul de I'intégrale 7 = / —_
o (1+ecosf)?
1 — 8. Dans le cas particulier o1 e = 0, préciser la nature de la trajectoire et 'expression de T';

en déduire une des lois de Kepler, préciser laquelle et proposer son énoncé « historique »
sous forme d’une phrase en francais.
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Le calcul de I'intégrale Z en fonc-
tion de e peut étre mené de ma-

niére
script

numérique (au moyen d’un
Python) ; les résultats sont

illustrés figure 2.

-9

Note :

Proposer l'écriture  des
lignes de code Python
permettant le tracé de la
figure 2 : courbe en trait
plein puis mise en exergue
d'une dizaine de valeurs
réguliérement réparties
pour 0 € e < %

on pourrait mener le cal-

cul exact de Uintégrale qui fournit
I(e) = (1—e?) 32, Ce calcul
n’est pas demandé !

intégrale /

9.5 4

9.0 1

8.5 1

8.0 1

7.5 4

7.0 1

6.5 4

T

0.0 0.1 0.2 0.3 0.4 0.5
parametre e

FIGURE 2 — Calcul numérique de 'intégrale Z

I.C Mesure de 'unité astronomique

Nous admettrons pour la Terre et Mars des orbites
circulaires centrées au centre S du référentiel de Co-
PERNIC, de rayons respectifs aq (c’est I'unité astrono-

mique) et a1, de périodes Tj et T7.

Le principe de la mesure de ay proposée par CASSINI,
a la fin du XVvII® siécle, consistait & observer simulta-

-
nément, depuis deux observatoires bien séparés (Paris .

et Cayenne, distants en ligne droite de £ = 7070 km)
la planéte Mars lorsqu’elle est & sa distance minimale
de la Terre, puis d’évaluer 'angle o entre les deux

directions de visée (Paris — Mars et Cayenne — FIGURE 3 — La Terre et la Lune vues
Mars).

depuis Mars par la sonde Mars Global
Surveyor, photo NASA

[ — 10. Sans soucis d’échelle, représenter sur un schéma unique I'ensemble des paramétres géo-
métriques ag, aq, £, a ci-dessus au moment de la mesure, lors d'une conjonction inférieure
(le Soleil, la Terre et Mars sont alignés dans cet ordre).

(d — 11. En déduire la relation permettant de déterminer ay en fonction de Ty, 11, ¢ et a.

O — 12. La valeur annoncée par CASSINI était o = 14” (secondes d’angle). Est-elle compatible

avec la relation ci—dessus?
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Formulaire en coordonnées sphériques

grad [F(r)] = ‘fjfa,. div [F(r)ii,] = :2; P2 F(r)]

Données numeériques

Grandeur Symbole, valeur et unité
Constante de Planck h =6,63-107**J.Hz™!
Constante de la gravitation universelle G =6,67-10 "' m? kg 152
Distance Terre—Soleil (unité astronomique) ao = 1UA = 1,50-10'' m
Masse de I’électron me = 9,11-10"* kg
Masse du proton m, = 1,67-10"* kg
Masse du Soleil My = 1,99-10° kg
Rayon du Soleil R = 6,96-108m
Rayon de la Terre Ry =6,37-10°m
Période du mouvement de la Terre (année) Ty = 365j = 3,16-107 s
Période du mouvement de Mars Ty = 687]
Seconde d’arc 1" = 4,85 prad
5\ 6871 5

On donne (E) ~ 1,6 et l%} ~

Syntaxes Python

Syntaxe d’appel \ Résultats ou commentaires

* Générer un tableau de n valeurs réguliérement sur [a, 0] :

r = numpy.linspace(a, b, n) ‘ r est un tableau de type numpy.array
b

* Evalue I'intégrale y = [ f(r)dz et estime ’erreur numérique

r = scipy.integrate.quad(f, a, b)‘ r = (y, err)

* Créer ou activer une fenétre de tracé :
r = matplotlib.pyplot.figure() ‘ exécuter avant de générer des tracés

x Tracer la courbe représentative de y = f(x)
matplotlib.pyplot.plot(x, y) ‘ x et y, énumérables de méme dimension

* Afficher la ou les fenétres de tracé :
matplotlib.pyplot.show() ‘ exécuter aprés avoir généré des tracés
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